精英家教网 > 高中数学 > 题目详情
已知离心率为的椭圆C的中心在坐标原点O,一焦点坐标为(1,0),圆O的方程为x2+y2=7.
(1)求椭圆C的方程,并证明椭圆C在圆O内;
(2)过椭圆C上的动点P作互相垂直的两条直线l1,l2,l1与圆O相交于点A,C,l2与圆O相交于点B,D(如图),求四边形ABCD的面积的最大值.

【答案】分析:(1)由题意可设椭圆C的方程为,利用离心率为的椭圆的焦点坐标为(1,0),即可求椭圆C的方程;设P(x,y)是椭圆C上的任意一点,到圆心的距离小于半径即可知椭圆C在圆O内
(2)设椭圆C上的动点P(x,y)到直线l1,l2的距离分别为d1,d2.则,求出的最小值,即可求得四边形ABCD的面积的最大值.
解答:解:(1)由题意可设椭圆C的方程为
,解得,故椭圆C的方程为
证明:设P(x,y)是椭圆C上的任意一点.
,故椭圆C在圆O内

(2)如图,设椭圆C上的动点P(x,y)到直线l1,l2的距离分别为d1,d2

由l1⊥l2,得
则t∈[3,4],四边形ABCD的面积
当且仅当,t=3时,上式取等号,此时
即点P(x,y)为.直线l1,l2的斜率分别为1,-1或-1,1.
所以四边形ABCD的面积的最大值为11.
点评:本题考查椭圆的标准方程,考查圆与椭圆的位置关系,考查圆内接四边形的面积,解题的关键是利用基本不等式求解面积的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)已知离心率为的椭圆C的左顶点为A,上顶点为B,且点B在圆M上.

(1)求椭圆C的方程;

(2)若过点A的直线l与圆M交于PQ两点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省怀化三中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知离心率为的椭圆C:过(1,
(1)求椭圆C的方程;
(2)是否存在实数m,使得在此椭圆C上存在不同两点关于直线y=4x+m对称,若存在请求出m,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省赣州市南康中学高二(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C:+=1(a>b>0)过点M(,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且,判定直线AB与圆O:x2+y2=的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012年天津市武清区高考数学一模试卷(理科)(解析版) 题型:解答题

已知离心率为的椭圆C:(a>b>0)与过点A(5,0),B(0,)的直线有且只有一个公共点M.
(1)求椭圆C的方程及点M的坐标;
(2)是否存在过点M的直线l,依次交椭圆C、x轴、y轴于点N(异于点M)、P、Q,且满足,若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省宿州市高考数学三模试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C:的左焦点为F,上顶点为E,直线EF截圆x2+y2=1所得弦长为
(1)求椭圆C的方程;
(2)过D(-2,0)的直线l与椭圆C交于不同的两点A、B,.试探究的取值范围.

查看答案和解析>>

同步练习册答案