精英家教网 > 高中数学 > 题目详情

【题目】定义满足不等式|xA|BARB0)的实数x的集合叫做AB邻域.若a+btt为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______

【答案】

【解析】

先根据条件求出tx2a+bt;再结合邻域是一个关于原点对称的区间得到a+b=t,最后结合基本不等式即可求出a2+b2的最小值.

因为AB邻域在数轴上表示以A为中心,B为半径的区域,

|xa+bt|a+btx2a+bt

而邻域是一个关于原点对称的区间,所以可得a+bt=0

所以a+b=t

又因为a2+b2≥2ab

所以2a2+b2a2+2ab+b2=a+b2=t2

所以:a2+b2

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市小型机动车驾照科二考试中共有5项考察项目,分别记作⑤.

1)某教练将所带10名学员科二模拟考试成绩进行统计(如图1所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只测不合格的项目),求补测项目种类不超过3项的概率;

2)如图2,某次模拟演练中,教练要求学员甲倒车并转向90°,在汽车边缘不压射线AC与射线BD的前提下,将汽车驶入指定的停车位. 根据经验,学员甲转向90°后可使车尾边缘完全落在线段CD,且位于CD内各处的机会相等.CA="BD=0.3m," AB="2.4m." 汽车宽度为1.8m, 求学员甲能按教练要求完成任务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为的奇函数.

(1)确定的值;

(2)若,函数,求的最小值;

(3)若,是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,与平面所成角的正弦值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数.

(Ⅰ) 的值;

(Ⅱ) 若存在,使不等式有解,求实数的取值范围;

(Ⅲ)已知函数满足,且规定,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形为正方形,为全等的等边三角形,分别为的中点,在此几何体中,下列结论中正确的个数有()

①平面平面

②直线与直线是异面直线

③直线与直线共面

④面与面的交线与平行

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求实数a的取值范围

查看答案和解析>>

同步练习册答案