精英家教网 > 高中数学 > 题目详情

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为某同学用随机模拟的方法确定这三天中恰有两天下雨的概率该同学利用计算器可以产生0到9之间的取整数值的随机数,他用1,4,7表示下雨,用0,2,3,5,6,8,9表示不下雨。实验得出如下20组随机数:

245,368,590,126,217,895,560,061,378,902

542,751,245,602,156,035,682,148,357,438

请根据该同学实验的数据确定这三天中恰有两天下雨的概率为 __________

【答案】0.15

【解析】分析:由已知条件可知,20组随机数中有3组满足三天中恰有两天下雨,根据概率公式计算,即可得到答案.

详解:由题意可知,经随机模拟产生的20组随机数中,表示三天中恰有两天下雨的有:217,751,148.3组随机数.

所求概率为.

故答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是

1)求椭圆E的方程;

2)过点,斜率为k的动直线与椭圆E相交于AB两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求证:是偶函数;

(2)求证:上是增函数;

(3)设,且),若对任意的,在区间上总存在两个不同的数,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正数的数列{an}的前n项和为Sn , 且满足
(Ⅰ)求证:{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信,其中每天使用微信时间在一小时以内的有人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.

)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表;


青年人

中年人

合计

经常使用微信




不经常使用微信




合计




)由列联表中所得数据,是否有的把握认为经常使用微信与年龄有关

)采用分层抽样的方法从经常使用微信的人中抽取人,从这人中任选人,求事件 选出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业员工500人参加学雷锋志愿活动,按年龄分组:第1[25,30),第2[30,35),第3[35,40),第4[40,45),第5[45,50],得到的频率分布直方图如图所示.

(1)上表是年龄的频数分布表,求正整数的值;

(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?

(3)(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)=的定义域为R,其中g(x)为指数函数,且过定点(2,9).

(1)求函数f(x)的解析式;

(2)若对任意的t∈[0,5],不等式f(t2+2tk)+f(-2t2+2t-5)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案