精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且圆经过椭圆C的上、下顶点.

1)求椭圆C的方程;

2)若直线l与椭圆C相切,且与椭圆相交于MN两点,证明:的面积为定值(O为坐标原点).

【答案】(1);(2)见解析.

【解析】

1)根据圆经过椭圆C的上、下顶点,可得,再根据离心率即可求得椭圆方程.

2)分斜率存在与否两种情况讨论,分别计算出的面积,即可得证.

1)解:因为圆过椭圆C的上、下顶点,所以.

又离心率,所以,则.

故椭圆C的方程为.

2)证明:椭圆

当直线l的斜率不存在时,这时直线l的方程为

联立,得,即

.

当直线l的斜率存在时,设

联立,得

,可得.

联立,得.

,所以

.

因为原点到直线l的距离

所以.

综上所述,的面积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在内的频率,补全这个频率分布直方图,并据此估计本次考试的平均分;

(2)用分层抽样的方法,在分数段为的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段内的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导数.

(Ⅰ)讨论不等式的解集;

(Ⅱ)时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:

x(单位:元)

30

40

50

60

y(单位:万人)

4.5

4

3

2.5

(1)若yx具有较强的相关关系,试分析yx之间是正相关还是负相关;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.

(1)求从该班男女同学在各抽取的人数;

(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.某机构组织了一场诗词知识竞赛,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,从中随机抽取100名选手进行调查,如图是根据调查结果绘制的选手等级与人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此判断能否在犯错误的概率不超过0.05的前提下认为选手成绩优秀与文化程度有关?

优秀

合格

总计

大学组

中学组

总计

(2)若参赛选手共6万名,用频率估计概率,试估计其中优秀等级的选手人数;

(3)在优秀等级的选手中选取6名,在良好等级的选手中选取6名,都依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组有唯一一组实数解(xy)的概率.

参考公式:,其中.

参考数据:

P(K2k0)

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,P:对任意实数x都有ax2+ax+10恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果“P∧Q”为假,且“P∨Q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2sinx,-1),,函数fx)=

(1)求函数fx)的对称中心;

(2)设ABC的内角ABC所对的边为abc,且a2=bc,求fA)的取值范围.

查看答案和解析>>

同步练习册答案