【题目】关于x的方程kx2﹣2lnx﹣k=0有两个不等实根,则实数k的取值范围是 .
【答案】(0,1)∪(1,+∞)
【解析】解:关于x的方程kx2﹣2lnx﹣k=0,
显然x=1,k﹣2ln1﹣k=0成立;
则方程的另一个根为x>0且x≠1,
若k=1,则方程为x2﹣2lnx﹣1=0,
由y=x2﹣2lnx﹣1,导数为2x﹣ = ,
可得x=1为极小值点也为最小值点,
则x2﹣2lnx﹣1=0只有一解x=1.
当x>1时,方程可化为k= ,
由f(x)= ,x>1,
f′(x)= ,
令g(x)=2x﹣ ﹣4xlnx,x>1,
可得g′(x)=2+ ﹣4(1+lnx)= ﹣2﹣4lnx,
显然g′(x)在x>1递减,即有g′(x)<g′(1)=0,
则g(x)在x>1递减,即有g(x)<g(1)=0,
即有f(x)在(1,+∞)递减;
同样当0<x<1时,f(x)递减,
且有f(x)>0在x>0且x≠1恒成立,
则当k>0且k≠1时,原方程有两个不等实根.
所以答案是:(0,1)∪(1,+∞).
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[﹣1,+∞)恒成立,则实数a的取值范围是( )
A.[0,+∞)
B.[0,1]
C.[0,e]
D.[﹣1,0]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点O,左焦点为F1 , 圆O过点F1 , 且与双曲线的一个交点为P,若直线PF1的斜率为 ,则双曲线的渐近线方程为( )
A.y=±x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的直角顶点A在y轴上,点B(1,0),D为斜边BC的中点,且AD平行于x轴.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线Γ,直线BC与Γ的另一个交点为E,以CE为直径的圆交y轴于点M,N,记圆心为P,∠MPN=α,求α的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A2n={1,2,3,…,2n}(n∈N* , n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”. (Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;
(Ⅱ)若m为集合A2n的“相关数”,证明:m﹣n﹣3≥0;
(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5 .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com