精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,角α,β的终边分别与以原点为圆心的单位圆交于A、B两点,且|
AB
|=
2
5
5

(Ⅰ)求cos(α-β)的值;
(Ⅱ)若0<α<
π
2
,-
π
2
<β<0
,且sinβ=-
5
13
,求sinα的值.
分析:(Ⅰ)根据题意设出
OA
OB
,利用向量法则根据
OB
-
OA
表示出
AB
,利用向量模的定义列出关系式,整理后利用两角和与差的余弦函数公式即可求出cos(α-β)的值;
(Ⅱ)由α与β的范围求出α-β的范围,利用同角三角函数间的基本关系求出sin(α-β)与cosβ的值,所求式子变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.
解答:解:(Ⅰ)根据题意设
OA
=(cosα,sinα),
OB
=(cosβ,sinβ),
AB
=
OB
-
OA
=(cosβ-cosα,sinβ-sinα),
∴|
AB
|2=(cosβ-cosα)2+(sinβ-sinα)2=
4
5
,即2-2(cosβcosα+sinβsinα)=
4
5

∴cos(α-β)=cosβcosα+sinβsinα=
3
5

(Ⅱ)∵0<α<
π
2
,-
π
2
<β<0,
∴0<α-β<π,
∴sin(α-β)=
1-cos2(α-β)
=
4
5

∵sinβ=-
5
13

∴cosβ=
1-sin2β
=
12
13

则sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=
4
5
×
12
13
-
3
5
×
5
13
=
33
65
点评:此题考查了两角和与差的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案