精英家教网 > 高中数学 > 题目详情
15.设函数f(x)的定义域为R,有下列三个命题:
①若存在常数M,使得对任意x∈R,有f(x)≤M,则M是函数f(x)的最大值;
②若存在x0∈R,使得对任意的x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值.
③若f(2x+1)的最大值为2,则f(4x-1)的最大值为2.
这些命题中,真命题的个数是(  )
A.0个B.1个C.2个D.3个

分析 利用函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值判断出各命题的真假.

解答 解:①M不一定是函数值,可能“=”不能取到.故①错误,
②因为函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值.故②正确,
③函数左右平移与伸缩变换不会改变函数值的大小,故③正确,
故真命题的个数为2个,
故选:C.

点评 本题考查函数的最大值的定义,利用最值的定义判断命题的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)对于任意实数x满足条件f(x+1)=$\frac{1}{f(x)}$,若f(1)=-5,则f(f(5))=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一化工厂生产某种产品,其生产成本为20元/kg,出厂价为50元/kg,在生产1kg这种产品的同时,还生产1.5m3的污水,污水的处理有两种方式:一种是直接排入河流,另一种是输送到污水处理厂,环保部门对排入河流的污水收费标准是15元/m3,污水处理厂对污水的收费标准是5元/m3,但只能净化污水的80%,未净化的污水仍排入河流,且污水排放费仍要生产产品的化工厂支付,若污水处理厂处理污水的最大能力是1m3/min,环保部门允许该厂的污水排入河流的最大排放量为0.4m3/min,问:该化工厂每分钟生产多少产品,每分钟直接流入河流的污水为多少时,纯利润最高?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.是否存在实数a,使f(x)=loga(ax2-x)(a>0,且a≠1)在区间[2,4]上是增函数?若存在,求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的三边长分别为a、b、c,且它的面积为S=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$,求∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列函数的奇偶性:f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x+1,x>0}\\{{x}^{2}+x-1,x≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={x|x=3m+1,m∈Z},B={x|x=3n+1,n∈Z},若a∈A,b∈B,则有(  )
A.ab∈AB.ab∈BC.ab∈A且ab∈B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.两个正整数之和比积小1000,且其中一个是完全平方数,试求较大的数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC三个内角A、B、C所对的边分别为a,b,c.已知C=$\frac{π}{3}$,acosA=bcosB.
(1)求角B的大小;
(2)如图,在△ABC内取一点P,使得PB=2.过点P分别作直线BA、BC的垂线PM、PN,垂足分别是M、N.设∠PBA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

同步练习册答案