精英家教网 > 高中数学 > 题目详情

【题目】将函数y=2cos(2x+)的图象向左平移个单位长度,得到函数y=fx)的图象.

(1)求fx)的单调递增区间;

(2)求fx)在[0,]上的值域.

【答案】(1);(2).

【解析】

(1)利用函数yAsin(ωx+φ)的图象变换规律,余弦函数的单调性,得出结论.

(2)利用余弦函数的定义域和值域,求得fx)在[0,]上的值域.

解:(1)函数y=2cos(2x+)的图象向左平移个单位长度,

得到函数y=fx)=2cos(2x++)=2cos(2x+)的图象,

令2kπ+π≤2x+≤2kπ+2π,求得kπ+xkπ+

可得函数的增区间为[kπ+kπ+],kZ

(2)在[0,]上,2x+∈[],cos(2x+)∈[-1,],

fx)∈[-2,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCDABCD是平行六面体.

(1)化简

(2)M是底面ABCD的中心,N是侧面BC C B对角线B C上的分点,设,试求αβγ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)单调递增,求实数的取值范围;

(3)当时,有最大值1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC=

(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):面ABCD为矩形,棱EF∥AB.若此几何体中,AB=4,EF=2,△ADE和△BCF都是边长为2的等边三角形,则此几何体的表面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求函数上的值域;

(2)若函数上的最小值为3,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某大型水上乐园内有一块矩形场地米, 米,以为直径的半圆和半圆(半圆在矩形内部)为两个半圆形水上主题乐园, 都建有围墙,游客只能从线段处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着修建不锈钢护栏,沿着线段修建该主题乐园大门并设置检票口,其中分别为上的动点, ,且线段与线段在圆心连线的同侧.已知弧线部分的修建费用为元/米,直线部门的平均修建费用为元/米.

(1)若米,则检票等候区域(其中阴影部分)面积为多少平方米?

(2)试确定点的位置,使得修建费用最低.

查看答案和解析>>

同步练习册答案