精英家教网 > 高中数学 > 题目详情
14、规定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,则函数f(x)=a◇x的值域为
(1,+∞)
分析:由题中给出的算式x◇y=(x+y)2-xy,x、y∈R+,容易求出1◇a=3中a的值,从而求出f(x)=a◇x表达式,得出值域.
解答:解:由题意知,∵1◇a=(1+a)2-1•a=a2+a+1=3,即a2+a-2=0;解得,a=1,或a=-2(舍去);
∴f(x)=a◇x=1◇x=(1+x)2-1•x=x2+x+1,其中x∈R+,又f(x)是二次函数,且在x∈R+时,f(x)单调递增,
∴f(x)的值域为(f(1),+∞),即(1,+∞).
故答案为:(1,+∞)
点评:本题给出算式模型,进行函数的有关计算;注意计算时要严格按照算式的要求(条件)进行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

义域分别是Df,Dg的函数y=f(x),y=g(x),规定:函数h(x)=
f(x)•g(x)     (x∈Df且x∈Dg)
f(x)     (x∈Df且x∉Dg)
g(x)   (x∉Df且x∈Dg)

若函数f(x)=-2x+3,x≥1;g(x)=x-2,X∈R.则函数h(x)的解析式为
h(x)=
-2x2+7x-6  (x≥1)
x-2                 (x<1)
h(x)=
-2x2+7x-6  (x≥1)
x-2                 (x<1)
,函数h(x)的最大值为
1
8
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(I)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(II)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上(包括85分)为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2

回归直线的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a=
.
y
-b
.
x
?
y
i
是与xi对应的回归估计值.
参考数据:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(yi-
.
y
)
2
≈457
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
457
≈21.4
550
≈23.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

规定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,则函数f(x)=a◇x的值域为 ________.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省寿昌中学、新安江中学、严州中学高三第二次联考数学试卷(理科)(解析版) 题型:解答题

规定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,则函数f(x)=a◇x的值域为    

查看答案和解析>>

同步练习册答案