精英家教网 > 高中数学 > 题目详情
已知曲线C:xy=1
(1)将曲线C绕坐标原点逆时针旋转45°后,求得到的曲线C的方程;
(2)求曲线C的焦点坐标和渐近线方程.
分析:(1)由题设条件求出旋转矩阵M=
cos45°-sin45°
sin45°cos45°
,经过TM变换后
x 
y 
x′ 
y′ 
=
2
2
-
2
2
2
2
2
2
 
x 
y 
,代入曲线C的方程得y′2-x′2=2,从而求出所求;
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
解答:解  (1)由题设条件,M=
cos45°-sin45°
sin45°cos45°
=
2
2
-
2
2
2
2
2
2

TM
x 
y 
x′ 
y′ 
=
2
2
-
2
2
2
2
2
2
x 
y 
=
2
2
x
-
2
2
2
x
2
+
2
2
,即有
x′=
2
2
x-
2
2
y
y′=
2
2
x+
2
2
y

解得
x=
2
2
(x′+y′)
y=
2
2
(y′-x′)
,代入曲线C的方程为y′2-x′2=2.
所以将曲线C绕坐标原点逆时针旋转45°后,得到的曲线是y2-x2=2.…(5分)
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
曲线y2-x2=2的焦点坐标是(0,-2),(0,2),渐近线方程x±y=0,
变换矩阵N=
cos(-45°)-sin(-45°)
sin(-45°)cos(-45°)
=
2
2
2
2
-
2
2
2
2

2
2
2
2
-
2
2
2
2
0 
-2 
=
-
2
 
-
2
 
2
2
2
2
-
2
2
2
2
0 
2 
=
2
 
2
 

即曲线C的焦点坐标是(-
2
,-
2
),(
2
2
).而把直线x±y=0要原点顺时针旋转45°恰为y轴与x轴,因此曲线C的渐近线方程为x=0和y=0.…(10分)
点评:本题主要考查了矩阵的应用,同时考查了旋转变换和双曲线的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点列An(n=1,2,3,…)的横坐标构成数列{xn},其中x1=
11
7

(1)求xn与xn+1的关系式;
(2)求证:{
1
xn-2
+
1
3
}是等比数列;
(3)求证:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:xy=1,过C上一点A1(x1,y1)作斜率k1的直线,交曲线C于另一点A2(x2,y2),再过A2(x2,y2)作斜率为k2的直线,交曲线C于另一点A3(x3,y3),…,过An(xn,yn)作斜率为kn的直线,交曲线C于另一点An+1(xn+1,yn+1)…,其中x1=1,kn=-
xn+1
x
2
n
+4xn
(x∈N*)

(1)求xn+1与xn的关系式;
(2)判断xn与2的大小关系,并证明你的结论;
(3)求证:|x1-2|+|x2-2|+…+|xn-2|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率kn=-
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1).
(1)求xn与xn+1之间的关系式;
(2)若x1=
11
7
,求证:数列
1
xn-2
+
1
3
是等比数列;
(3)求证:(-1)x1+(-1)2x2+(-1)3x3+…(-1)nxn<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点列{An}的横坐标构成数列{xn},其中x1=
11
7

(I)求xn与xn+1的关系式;
(II)令bn=
1
xn-2
+
1
3
,求证:数列{bn}是等比数列;
(III)若cn=3n-λbn(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

同步练习册答案