精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论单调性;

(Ⅱ)当时,设函数存在两个零点,求证:

【答案】(Ⅰ)详见解析;(Ⅱ)证明见解析

【解析】

(Ⅰ),分两种情况讨论函数的单调性;

(Ⅱ)解法一:由题意可知,两式相减可得,再利用分析法转化为证明要证,只需证,再通过变形,构造,证明只需证即可,,构造函数,利用导数证明.

解法二:由题意可知,再换元令,即,两式相减得,要证,即只需证,即证,再通过变形,构造得到,利用导数证明.

解:(1

时,上单调递增;

时,令上单调递减,在上单调递增;

(Ⅱ)解法一:由题意知,由

两式相减得,因为,故

要证,只需证

两边同除以

,故只需证即可.

时,,故上单调递减,

,故上单调递增,故,故原命题得证.

【解法二】

由题意知,由

,即,两式相减得

要证,即只需证,即证,即,即

,只需证即可.

时,,故上单调递增,故,因此原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为等腰直角三角形,DBC的中点.

1)求证:平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为,记过圆锥轴的平面ABCD为平面与两个圆锥面的交线为ACBD),用平行于的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于ACBD,则双曲线E的离心率为(

A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的序号是_______.

①存在某个位置,使得

②翻折过程中,的长是定值;

③若,则

④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面建成小康社会的决胜阶段,让贫困地区同全国人民共同进入全面小康社会是我们党的庄严承诺.在“脱真贫、真脱贫”的过程中,精准扶贫助推社会公平显得尤其重要.若某农村地区有200户贫困户,经过一年扶贫后,对该地区的“精准扶贫”的成效检查验收.从这200户贫困户中随机抽出50户,对各户的人均年收入(单位:千元)进行调查得到如下频数表:

人均年收入

频数

2

3

10

20

10

5

若人均年收入在4000元以下的判定为贫困户,人均年收入在4000元~8000元的判定为脱贫户,人均年收入达到8000元的判定为小康户.

1)用样本估计总体,估计该地区还有多少户没有脱贫;

2)为了了解未脱贫的原因,从抽取的50户中用分层抽样的方法抽10户进行调研.

①贫困户、脱贫户、小康户分别抽到的人数是多少?

②从被抽到的脱贫户和小康户中各选1人做经验介绍,求小康户中人均年收入最高的一户被选到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,某地援鄂医护人员人(其中是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这名医护人员和接见他们的一位领导共人站一排进行拍照,则领导和队长站在两端且相邻,而不相邻的排法种数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若处的切线为

(Ⅰ)求实数的值;

(Ⅱ)若不等式对任意恒成立,求的取值范围;

(Ⅲ)设其中,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

)求曲线的普通方程与曲线的直角坐标方程;

)设点分别是曲线上两动点且,求面积的最大值.

查看答案和解析>>

同步练习册答案