精英家教网 > 高中数学 > 题目详情
13.二项式(x$\sqrt{x}$-$\frac{1}{x}$)5的展开式中常数项为-10.(用数字作答)

分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.

解答 解:二项式(x$\sqrt{x}$-$\frac{1}{x}$)5的展开式的通项公式为Tr+1=${C}_{5}^{r}$•(-1)r•${x}^{\frac{15-5r}{2}}$,
令$\frac{15-5r}{2}$=0,求得r=3,可得展开式中常数项为-${C}_{5}^{3}$=-10,
故答案为:-10.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+b(a,b∈R).
(Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函数f(x)的值域;
(ii)若函数f(x)的值域为[0,1],求a,b的值;
(Ⅱ)当|x|≥2时,恒有f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点B(-2,0)、C(2,0),且△ABC的周长等于14,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a=(cosωx,sinωx)$,$\overrightarrow b=(cosωx,\sqrt{3}cosωx)$,其中ω>0,函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,其最小正周期为π.
(1)求函数f(x)的表达式及单调减区间;
(2)在△ABC的内角A,B,C所对的边分别为a,b,c,S为其面积,若f($\frac{A}{2}$)=1,b=1,S△ABC=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设曲线x=$\sqrt{2y-{y}^{2}}$上的点到直线x-y-2=0的距离的最大值为a,最小值为b,则a-b的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(c,0)作x轴的垂线,与椭圆C在第一象限内交于点A,过A作直线x=$\frac{{a}^{2}}{c}$的垂线,垂足为B,|AF|=$\frac{\sqrt{3}}{3}$,|AB|=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为圆E:x2+y2=4上任意一点,过点P作椭圆C的两条切线l1、l2,设l1、l2分别交圆E于点M、N,证明:MN为圆E的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移$\frac{π}{3}$个单位,得函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=6,且g(B)=0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.在频率分布直方图中,众数左边和右边的直方图的面积相等
B.为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行编号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样
C.“x≠1”是“x2-3x+2≠0”的充分不必要条件
D.命题p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定为:“?x∈R,x2-3x+2≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+ax,若f(f(x))的最小值与f(x)的最小值相等,则a的取值范围是{a|a≥2或a≤0}.

查看答案和解析>>

同步练习册答案