【题目】如图,在四棱锥P-ABCD中,,平面PAB,,点E满足.
(1)证明:;
(2)求二面角A-PD-E的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)由勾股定理计算出,然后求数量积得,由线面垂直可得,从而可证得平面ABCD得证线线垂直;
(2)建立如图所示的直角坐标系,用空间向量法求二面角的余弦值.
(1)证明:在中,
由勾股定理,得
.
因为,
所以
.
所以,所以.
因为平面PAB,平面PAB,
所以.
又因为,
所以平面ABCD.
又因为平面ABCD,
所以.
(2)由得.
所以点E是靠近点A的线段AB的三等分点.
所以.
分别以所在方向为y轴,z轴的正方向,建立如图所示的空间直角坐标系.
则.
设平面PDE的法向量为,
由,得.
令,则;
设平面APD的法向量为,
由,得,
令,则.
设向量与的夹角为,
则.
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形为矩形,是的中点,是的中点,点在线段上且.
(1)证明平面;
(2)当为多大时,在线段上存在点使得平面且与平面所成角为同时成立?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式。孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数.在不超过30的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是圆F1:(x+1)2+y2=16上任意一点,F2(1,0),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.
(1)求曲线C的方程;
(2)记曲线C与x轴交于A,B两点,M是直线x=1上任意一点,直线MA,MB与曲线C的另一个交点分别为D,E,求证:直线DE过定点H(4,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(1)若函数f(x)恰有一个零点,证明:aa=ea-1;
(2)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com