精英家教网 > 高中数学 > 题目详情
(2013•佛山一模)设g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常数,且0<λ<1.
(1)求函数f(x)的极值;
(2)证明:对任意正数a,存在正数x,使不等式|
ex-1
x
-1|<a
成立;
(3)设λ1λ2R+,且λ12=1,证明:对任意正数a1,a2都有:
a
λ1
1
+a
λ2
2
λ1a1+λ2a2
分析:(1)首先对函数求导,使得导函数等于0,解出x的值,分两种情况讨论:当f′(x)>0,当f′(x)<0,做出函数的极值点,求出极值.
(2)由于|
ex-1
x
-1|=|
ex-x-1
x
|
,再将原不等式化为
ex-x-1
x
<a
,即ex-(1+a)x-1<0,令g(x)=ex-(1+a)x-1,利用导数研究此函数的极值,从而得出存在正数x=ln(a+1),使原不等式成立.
(3)对任意正数a1,a2,存在实数x1,x2使a1=e x1,a2=e x2,则a1λ1a2λ2=eλ1x1eλ2x2λ1a1+λ2a2=λ1ex1+λ2ex2,将原不等式
a
λ1
1
+a
λ2
2
λ1a1+λ2a2
?eλ1x1+ λ2x2λ1ex1+λ2ex2?g(λ1x12x2)≤λ1g(x1)+λ2g(x2),下面利用(1)的结论得出eλ1x1+ λ2x2λ1ex1+λ2ex2即可.
解答:解:(1)∵f′(x)=λg[λx+(1-λ)a]-λg′(x),-----------------(1分)
由f′(x)>0得,g[λx+(1-λ)a]>g′(x),
∴λx+(1-λ)a>x,即(1-λ)(x-a)<0,解得x<a,-----------------(3分)
故当x<a时,f′(x)>0;当x>a时,f′(x)<0;
∴当x=a时,f(x)取极大值,但f(x)没有极小值.-----------------(4分)
(2)∵|
ex-1
x
-1|=|
ex-x-1
x
|

又当x>0时,令h(x)=ex-x-1,则h′(x)=ex-1>0,
故h(x)>h(0)=0,
因此原不等式化为
ex-x-1
x
<a
,即ex-(1+a)x-1<0,-----------------(6分)
令g(x)=ex-(1+a)x-1,则g′(x)=ex-(1+a),
由g′(x)=0得:ex=(1+a),解得x=ln(a+1),
当0<x<ln(a+1)时,g′(x)<0;当x>ln(a+1)时,g′(x)>0.
故当x=ln(a+1)时,g(x)取最小值g[ln(a+1)]=a-(1+a)ln(a+1),---------------(8分)
令s(a)=
a
1+a
-ln(1+a)
,则s′(a)=
1
(1+a)2
-
1
1+a
=-
a
(1+a)2
<0

故s(a)<s(0)=0,即g[ln(a+1)]=a-(1+a)ln(a+1)<0.
因此,存在正数x=ln(a+1),使原不等式成立.-----------------(10分)
(3)对任意正数a1,a2,存在实数x1,x2使a1=e x1,a2=e x2
a1λ1a2λ2=eλ1x1eλ2x2λ1a1+λ2a2=λ1ex1+λ2ex2
原不等式
a
λ1
1
•a
λ2
2
λ1a1+λ2a2
?eλ1x1+ λ2x2λ1ex1+λ2ex2
?g(λ1x12x2)≤λ1g(x1)+λ2g(x2)-----------------(14分)
由(1)f(x)≤(1-λ)g(a)
故g[λa+(1-λ)a]≤λg(x)+(1-λ)g(a)
令x=x1,a=x2,λ=λ1,1-λ=λ2
从而g(λ1x12x2)≤λ1g(x1)+λ2g(x2
eλ1x1+ λ2x2λ1ex1+λ2ex2成立,得证(14分)
点评:本小题主要考查函数在某点取得极值的条件、导数在最大值、最小值问题中的应用及应用所学导数的知识、思想和方法解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•佛山一模)已知
a
=(1,2),
b
=(0,1),
c
=(k,-2),若(
a
+2
b
)⊥
c
,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:
①f(x)在[m,n]内是单调的;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.若函数f(x)=
a+1
a
-
1
x
(a>0)
存在“和谐区间”,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)数列{an}的前n项和为Sn=2an-2,数列{bn}是首项为a1,公差不为零的等差数列,且b1,b3,b11成等比数列.
(1)求a1,a2,a3的值;
(2)求数列{an}与{bn}的通项公式;
(3)求证:
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
<5.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)某工厂生产某种产品,每日的成本C(单位:元)与日产里x(单位:吨)满足函数关系式C=3+x,每日的销售额R(单位:元)与日产量x满足函数关系式S=
3x+
k
x-8
+ 5.(0<x<6)
14 (x≥6)
,已知每日的利润L=S-C,且当x=2时,L=3
(Ⅰ)求k的值;
(Ⅱ)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)
组别 候车时间 人数
[0,5) 2
[5,10) 6
[10,15) 4
[15,20) 2
[20,25] 1
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):
(1)求这15名乘客的平均候车时间;
(2)估计这60名乘客中候车时间少于10分钟的人数;
(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

同步练习册答案