精英家教网 > 高中数学 > 题目详情
15.若α是第二象限角,则sin (sinα),sin (cosα),cos (sinα),cos (cosα)中正数的个数是3.

分析 由正余弦函数在第二象限的符号便可得到$0<sinα<\frac{π}{2},-\frac{π}{2}<cosα<0$,这样根据正余弦函数图象或正余弦函数在第一、第四象限的符号即可判断每一项的符号,从而得出正数的个数.

解答 解:∵α是第二象限角;
∴$0<sinα<1<\frac{π}{2}$,$-\frac{π}{2}<-1<cosα<0$;
∴sin(sinα)>0,sin(cosα)<0,cos(sinα)>0,cos(cosα)>0;
∴正数的个数为3.
故答案为:3.

点评 考查象限角的概念,正余弦函数在各象限的符号,以及正余弦函数的值域,要熟悉正余弦函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.双曲线的中心在原点,一条渐近性方程为2x-3y=0,一个焦点坐标为($\sqrt{13}$,0),求该双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A是锐角,B是钝角,且cos(A-B)=$\frac{3}{5}$,求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上任意一点P,若F是椭圆的一个焦点,则|PF|的取值范围是(  )
A.[4,5]B.(4,5)C.(2,8)D.[2,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|lgx|,0<a<b,且f(a)<f(b),则(  )
A.ab=1B.(a-1)(b-1)>0C.ab<1D.ab>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列命题 (1)${log_{0.5}}3<{2^{\frac{1}{3}}}<{(\frac{1}{3})^{0.2}}$;
(2)函数f(x)=log4x-2sinx有5个零点;
(3)函数f(x)=ln$\frac{x-4}{x-6}$+$\frac{x}{12}$的图象以$(5,\frac{5}{12})$为对称中心;
(4)已知a>0,b>0,函数y=2aex+b的图象过点(0,1),则$\frac{1}{a}+\frac{1}{b}$的最小值是4$\sqrt{2}$.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{{2^{2x}}}}{{2+{2^{2x}}}}$
(1)求$f({\frac{1}{2}})$;
(2)求f(x)+f(1-x)的值;
(3)求$f({\frac{1}{100}})+f({\frac{2}{100}})+f({\frac{3}{100}})+…+f({\frac{98}{100}})+f({\frac{99}{100}})的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆中心在原点,对称轴为坐标轴,离心率为$\frac{1}{2}$,长轴长为8,求该椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=$lo{g_{\frac{1}{2}}}$(3x2-2x+1),求使f(x)<-1的x取值范围是(-∞,-$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

同步练习册答案