精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$,若f(x)是定义在区间[a-6,2a]上的奇函数,则f($\frac{a}{2}$)=$\frac{1}{3}$.

分析 由于奇函数的定义域必然关于原点对称,可得a-6+2a=0,求出a的值,代入f($\frac{a}{2}$)可得结论.

解答 解:∵f(x)在区间[a-6,2a]上是奇函数,
∴a-6+2a=0,即a=2.
∴f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
则f($\frac{a}{2}$)=f(1)=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查函数的奇偶性的判断,利用了奇函数的定义域必然关于原点对称,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若f(x)=2x+3,g(x+2)=f(x-1),则g(x)的表达式为(  )
A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,AC为球O的直径,BC是截面圆O1的直径,点D在圆O1上,根据球的截面性质:球心和截面圆心的连线垂直于截面,求证:
(1)AB⊥平面BCD;
(2)平面ADC⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}{cosπx,x≥0}\\{f(x+1)+1,x<0}\end{array}\right.$,则f($\frac{3}{5}$)+f(-$\frac{3}{5}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.简答题
已知tanα=2,求下列各式的值
(1)$\frac{sinα+3cosα}{3sinα-cosα}$(2)$\frac{2si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z=|$\frac{\sqrt{3}-i}{i}$|-i(i为虚数单位),则复数z的共轭复数为2+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,一次函数y=-$\frac{3}{4}$x+6的图象分别与x轴、y轴交于点A,B,点P从点B出发,沿BA以每秒1个单位长度的速度向点A,当点P到达点A时停止运动,设点P的运动时间为t秒.
(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点的坐标;
(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;
(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当x$≥\frac{5}{2}$时,不等式$\frac{{x}^{2}-4x+5}{2x-4}$≥a恒成立,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=cosx,x∈[$\frac{π}{3},\frac{12π}{11}$]的最小值为-1.

查看答案和解析>>

同步练习册答案