精英家教网 > 高中数学 > 题目详情
3.若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm2),则它的体积为$\frac{4\sqrt{3}}{3}$(单位:cm3).

分析 根据侧面积计算出棱锥的斜高,利用勾股定理计算棱锥的高.

解答 解:设四棱锥为P-ABCD,底面ABCD的中心为O取CD中点E,连结PE,OE.
则PE⊥CD.OE=$\frac{1}{2}BC$=1.
∵S侧面=4S△PCD=4×$\frac{1}{2}$×CD×PE=8,∴PE=2.
∴PO=$\sqrt{3}$,
∴正四棱锥体积V=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为$\frac{4\sqrt{3}}{3}$.

点评 本题考查了棱锥的结构特征,体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a=0.993,b=log20.6,c=log3π,则(  )
A.c<a<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若倾斜角为45°的直线m被平行线l1:x+y-1=0与l2:x+y-3=0所截得的线段为AB,则AB的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点P(a,b)关于直线l的对称点为Q(3-b,3-a),则直线l的方程是(  )
A.x+y-3=0B.x+y+b-a=0C.x+y-a-b=0D.x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=1,$AB=\frac{1}{2}$,点E为棱PC的中点.
(1)求直线BE与AD所成角的大小;
(2)证明:BE⊥DC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=g(x)•h(x),其中函数g(x)=ex,h(x)=x2+ax+a.
(1)求函数g(x)在(1,g(1))处的切线方程;
(2)当0<a<2时,求函数f(x)在x∈[-2a,a]上的最大值;
(3)当a=0时,对于给定的正整数k,问函数F(x)=e•f(x)-2k(lnx+1)是否有零点?请说明理由.(参考数据e≈2.718,$\sqrt{e}$≈1.649,e$\sqrt{e}$≈4.482,ln2≈0.693)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线m,n满足m?α,n?α,则n⊥m是n⊥α(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,已知正方体ABCD-A1B1C1D1的棱长为1,长为1的线段MN的一个端点M在棱DD1上运动,点N在正方形ABCD内运动,则MN中点P的轨迹的面积为(  )
A.$\frac{π}{2}$B.$\frac{π}{16}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在下列三个命题中,真命题的个数是(  )
①?x0∈Z,x03<0;
②方程ax2+2x+1=0至少有一个负实数根的充分条件是a=0;
③抛物线y=4x2的准线方程是:y=1.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案