Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬A¡¢B·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ¶¥µã£¬ÇÒ
AF2
=5
F2B
£®
£¨1£©ÇóÍÖÔ²EµÄÀëÐÄÂÊ£»
£¨2£©ÒÑÖªµãD£¨1£¬0£©ÎªÏ߶ÎOF2µÄÖе㣬MΪÍÖÔ²EÉϵĶ¯µã£¨ÒìÓÚµãA¡¢B£©£¬Á¬½ÓMF1²¢ÑÓ³¤½»ÍÖÔ²EÓÚµãN£¬Á¬½ÓMD¡¢ND²¢·Ö±ðÑÓ³¤½»ÍÖÔ²EÓÚµãP¡¢Q£¬Á¬½ÓPQ£¬ÉèÖ±ÏßMN¡¢PQµÄбÂÊ´æÔÚÇÒ·Ö±ðΪk1¡¢k2£¬ÊÔÎÊÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃk1+¦Ëk2=0ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏߵĹØϵ,ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ
רÌ⣺×ÛºÏÌâ,Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²µÄ·½³Ì£¬Ìõ¼þ¿ÉµÃ£ºa+c=5£¨a-c£©£¬»¯¼òµÃ2a=3c£¬Çó³öÀëÐÄÂÊ£®
£¨2£©ÇóµÃÍÖÔ²EµÄ·½³ÌΪ
x2
9
+
y2
5
=1
£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬ÔòÖ±ÏßMDµÄ·½³ÌΪx=
x1-1
y1
y+1
£¬´úÈëÍÖÔ²·½³Ì
x2
9
+
y2
5
=1
£®ÕûÀíµÃ
5-x1
y
2
1
y2+
x1-1
y1
y-4=0
£¬ÔËÓÃΤ´ï¶¨Àí£¬ÕûÌåÇó½â¼´¿É£¬
½â´ð£º ½â£º£¨1£©¡ßÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬A¡¢B·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ¶¥µã£¬ÇÒ
AF2
=5
F2B
£®£®
¡àa+c=5£¨a-c£©£¬»¯¼òµÃ2a=3c£¬
¹ÊÍÖÔ²EµÄÀëÐÄÂÊΪ
2
3
£®
£¨2£©´æÔÚÂú×ãÌõ¼þµÄ³£Êý¦Ë£¬¦Ë=-
4
7
£®
¡ßµãD£¨1£¬0£©ÎªÏ߶ÎOF2µÄÖе㣬¡àc=2£¬´Ó¶øa=3£¬b=
5
£¬
×ó½¹µãF1£¨-2£¬0£©£¬ÍÖÔ²EµÄ·½³ÌΪ
x2
9
+
y2
5
=1
£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬ÔòÖ±ÏßMDµÄ·½³ÌΪx=
x1-1
y1
y+1
£¬
´úÈëÍÖÔ²·½³Ì
x2
9
+
y2
5
=1
£®ÕûÀíµÃ
5-x1
y
2
1
y2+
x1-1
y1
y-4=0
£¬
¡ßy1+y3=
y1(x1-1)
x1-5
£¬¡ày3=
4y1
x1-5
£®
´Ó¶øx3=
5x1-9
x1-5
£¬¹ÊµãP£¨
5x1-9
x1-5
£¬
4y1
x1-5
£©£®Í¬Àí£¬µãQ£¨
5x2-9
x2-5
£¬
4y2
x2-5
£©
¡ßÈýµãM¡¢F1¡¢N¹²Ïߣ¬¡à
y1
x1+2
=
y2
x2+2
£¬´Ó¶øx1y2-x2y1=2£¨y1-y2£©£®
´Ó¶øk2=
y3-y4
x3-x4
=
y1y2-x2y1+5(y1-y2)
4(x1-x2)
=
7(y1-y2)
4(x1-x2)
=
7k1
4
£®
¹Êk1-
4k2
7
=0£¬´Ó¶ø´æÔÚÂú×ãÌõ¼þµÄ³£Êý¦Ë=-
4
7
£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²ÓëÖ±ÏßµÄλÖùØϵ£¬×ۺϿ¼²éÁË£¬·½³Ì£¬ÕûÌå´úÈëµÄ·½·¨£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=mx2-3x+1µÄͼÏóÉÏÆäÁãµãÖÁÉÙÓÐÒ»¸öÔÚÔ­µãÓҲ࣬ÔòʵÊýmµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖУ¬OΪ×ø±êÔ­µã£¬ÈôÏòÁ¿
OA
=£¨a£¬3£¬4a-1£©£¬
OB
=£¨2-3a£¬2a+1£¬3£©£¬a¡ÊR£¬ÇÒMÊÇÏ߶ÎABµÄÖе㣬Ôò|
OM
|µÄ×îСֵÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©ÊÇRÉϵÄÆ溯Êý£¬ÇÒx£¾0ʱ£¬f£¨x£©=2x£¬Ôòx£¼0ʱ£¬f£¨x£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊǶÌÖ᳤µÄÁ½±¶£¬½¹¾àΪ2
3
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè²»¹ýÔ­µãOµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚÁ½µãM¡¢N£¬ÇÒÖ±ÏßOM¡¢MN¡¢ONµÄбÂÊÒÀ´ÎÂú×ãkMN2=kOM•kON£¬Çó¡÷OMNÃæ»ýµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©¶¨ÒåÓòÊÇ{x|x¡Ù
k
2
£¬k¡ÊZ£¬x¡ÊR}£¬ÇÒf£¨x£©+f£¨2-x£©=0£¬f£¨x+1£©=-
1
f(x)
£¬µ±
1
2
£¼x£¼1ʱ£¬f£¨x£©=3x£®
£¨1£©Ö¤Ã÷£ºf£¨x£©ÎªÆ溯Êý£»
£¨2£©Çóf£¨x£©ÔÚ(-1£¬-
1
2
)
Éϵıí´ïʽ£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊýk£¬Ê¹µÃx¡Ê(2k+
1
2
£¬2k+1)
ʱ£¬log3f£¨x£©£¾x2-kx-2kÓн⣬Èô´æÔÚÇó³ökµÄÖµ£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏßC£º
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïßx-2y+1=0´¹Ö±£¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A¡¢
5
2
B¡¢
3
C¡¢2
D¡¢
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬µÈ²îÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬Èô
Sn
Tn
=
n+1
n-1
£¬Ôò
a2
b4+b6
+
a8
b3+b7
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÁ½¸öµÈ²îÊýÁÐ{an}¡¢{bn}µÄÇ°nÏîºÍ·Ö±ðΪSn¡¢Tn£¬¶ÔÈÎÒâµÄn¡ÊN*¶¼ÓÐ
Sn
Tn
=
2n-1
4n-3
£¬Ôò
a4
b3+b7
+
a8
b3+b9
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸