精英家教网 > 高中数学 > 题目详情

【题目】已知函数上的最大值为.

(1)求a的值;

(2)求在区间上的零点个数.

【答案】(1)(2)上有2个零点

【解析】

1)对函数求导得,对参数分两种情况进行讨论,得到函数的单调性后,再利用函数的最大值,求得的值;

2)利用隐零点法,得到上递增,在上递减,计算的正负,再利用零点存在定理证明函数在存在两个零点.

1)由已知得.

时,,所以.

,则上递减,上的最大值为,不合题意.

,则上递增,上的最大值为.

,得.

(2)由(1)可知.

,则.

时,恒成立,所以上递减.

又因为,所以在上存在唯一的满足,且当时,,当时,.

注意到在的符号相同,所以上递增,在上递减.

又因为

所以上各有一个零点,即在上有2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查“双11”消费活动情况,某校统计小组分别走访了两个小区各20户家庭,他们当日的消费额按分组,分别用频率分布直方图与茎叶图统计如下(单位:元):

1)分别计算两个小区这20户家庭当日消费额在的频率,并补全频率分布直方图;

2)分别从两个小区随机选取1户家庭,求这两户家庭当日消费额在的户数为1时的概率(频率当作概率使用);

3)运用所学统计知识分析比较两个小区的当日网购消费水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线与抛物线相交于两点,且,若轴距离的乘积为

1)求的方程;

2)设点为抛物线的焦点,当面积最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下几个结论:

①命题,则

②命题“若,则”的逆否命题为:“若,则

③“命题为真”是“命题为真”的充分不必要条件

④若,则的最小值为4

其中正确结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为

(1)求椭圆的方程;

(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回归方程 其中为常数)进行模拟.

(Ⅰ)若该农户产出的该新奇水果的价格为150/箱,试预测该新奇水果100箱的利润是多少元.|

(Ⅱ)据统计,10月份的连续16天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.

i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;

(ⅱ)求这16天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)

参考数据与公式:设,则

0.54

6.8

1.53

0.45

线性回归直线中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为内角的对边,且满.

1)求的大小;

2)再在①,②,③这三个条件中,选出两个使唯一确定的条件补充在下面的问题中,并解答问题.________________,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

同步练习册答案