分析 (1)以C为原点,CA为x轴,CB为y轴,CD为z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成的角.
(2)过A作AH⊥EB于H,连结HM,则∠AHM是二面角A-EB-C的平面角,由此能求出二面角A-EB-C的大小.
解答 解:(1)以C为原点,CA为x轴,CB为y轴,CD为z轴,建立空间直角坐标系,
设AC=BC=1,则A(1,0,0),B(0,1,0),E(1,0,1),C(0,0,0),
$\overrightarrow{AB}$=(-1,1,0),$\overrightarrow{CB}$=(0,1,0),$\overrightarrow{CE}$=(1,0,1),
设平面EBC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=y=0}\\{\overrightarrow{n}•\overrightarrow{CB}=x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-1),
设直线AB与平面EBC所成的角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{AB}|}{|\overrightarrow{n}|•|\overrightarrow{AB}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=30°,
∴直线AB与平面EBC所成的角为30°.
(2)过A作AH⊥EB于H,连结HM,
∵AM⊥平面EBC,
∴AM⊥EB,∴EB⊥平面AHM,
∴∠AHM是二面角A-EB-C的平面角,
∵平面ACDE⊥平面ABC,
∴EA⊥平面ABC,
∴EA⊥AB,在Rt△EAB中,AH⊥EB,有AE•AB=EB•AH,
设EA=AC=BC=2a,可得AB=2$\sqrt{2}a$,EB=2$\sqrt{3}a$,
∴AH=$\frac{AE•AB}{EB}$=$\frac{2\sqrt{2}a}{\sqrt{3}}$,
∴sin$∠AHM=\frac{AM}{AH}$=$\frac{\sqrt{3}}{2}$,∴∠AHM=60°,
∴二面角A-EB-C等于60°.
点评 本题考查线面角、二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com