精英家教网 > 高中数学 > 题目详情
10.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是4x+3y-2=0.

分析 根据两圆的方程,作差即可求出两圆公共弦所在的直线方程.

解答 解:∵圆C1:x2+y2-12x-2y-13=0①,
圆C2:x2+y2+12x+16y-25=0②;
①-②得,-24x-18y+12=0,
即4x+3y-2=0;
所以两圆的公共弦所在的直线方程为4x+3y-2=0.
故答案为:4x+3y-2=0.

点评 本题考查了根据两圆方程求它们公共弦所在的直线方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=log2|x|的图象特点为(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=2$\sqrt{3}$,D、E分别为AA1、BC1的中点.
(1)求证:DE⊥平面BB1C1C;
(2)求BC与平面BC1D所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$f(x)=\frac{a•{4}^{x}-{2}^{x+1}-a+1}{{2}^{x}}(a∈R)$,如果存在x1,x2∈[-1,1]使得$|{f({x_1})-f({x_2})}|≥\frac{a+1}{2}$成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={y|y=x+2},N={(x,y)|y=x2},则M∩N=(  )
A.B.{y|y≥0}C.{(2,4),(-1,1)}D.{y|y>0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},则 A∩B等于(  )
A.{x|-3<x<0}B.{x|-3<x<-1}C.{x|x<-1}D.{x|-1≤x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2cosA-1)sinB+2cosA=1.
(1)求A的大小;
(2)若5b2=a2+2c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中不正确的是(  )
A.logab•logbc•logca=1(a,b,c均为不等于1的正数)
B.若xlog34=1,则${4^x}+{4^{-x}}=\frac{10}{3}$
C.函数f(x)=lnx满足f(a+b)=f(a)•f(b)(a,b>0)
D.函数f(x)=lnx满足f(a•b)=f(a)+f(b)(a,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线y=-xsinθ+1的倾斜角的取值范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

同步练习册答案