(本题满分12分)
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组得到的频率分布直方图如图所示
(1)分别求第3,4,5组的频率;
(2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试,
①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率;
②学校决定在这6名学生中随机抽取2名学生接受考官的面试,第4组中有名学生被考官面试,求的分布列和数学期望.
(1)第3组的频率为 ;第4组的频率为 ;第5组的频率为
(2)按分层抽样的方法在第3、4、5组中分别抽取3人、2人、1人。
的分布列为
0 |
1 |
2 |
|
|
【解析】本题考查频率分步直方图的性质,考查等可能事件的概率,考查离散型随机变量的分布列和期望,考查超几何分布,本题是一个概率与
(I)根据频率分步直方图的性质,根据所给的频率分步直方图中小矩形的长和宽,求出矩形的面积,即这组数据的频率.
(II)(A)本题是一个等可能事件的概率,试验发生包含的事件数是C303,满足条件的事件数是C281,根据等可能事件的概率公式,得到结果.
(B)由题意知变量ξ的可能取值是0,1,2,该变量符合超几何分布,根据超几何分布的概率公式写出变量的概率,写出这组数据的分布列和期望值.
(1)第3组的频率为 ;第4组的频率为 ;
第5组的频率为
(1) 按分层抽样的方法在第3、4、5组中分别抽取3人、2人、1人。
① 第3组共有,设“学生甲和学生乙同时进入第二轮面试”为事件
,学生甲和学生乙同时进入第二轮面试的概率为
②可取值为
,,
的分布列为
0 |
1 |
2 |
|
|
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com