精英家教网 > 高中数学 > 题目详情
(2013•肇庆二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1
分析:运用微积分基本定理和定积分的运算律计算即可.
解答:解:
π
2
0
(3x+sinx)dx=
π
2
0
3xdx+
π
2
0
sinxdx
=
3
2
x2
|
π
2
0
-cosx
|
π
2
0
=
3
8
π2-(-1)=
3
8
π2+1
故答案为:
3
8
π2+1
点评:本题主要考查了定积分,运用微积分基本定理计算定积分.解答定积分的计算题,熟练掌握定积分的相关性质:①∫ab1dx=b-a②∫abkf(x)dx=k∫abf(x)dx③∫abf(x)±g(x)dx=∫abf(x)dx±∫abg(x)dx
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•肇庆二模)(坐标系与参数方程选做题)
若以直角坐标系的x轴的非负半轴为极轴,曲线l1的极坐标系方程为ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直线l2的参数方程为
x=1-2t
y=2t+2
(t为参数),则l1与l2的交点A的直角坐标是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)定义全集U的子集M的特征函数为fM(x)=
1,x∈M
0,x∈CUM
,这里?UM表示集合M在全集U中的补集,已M⊆U,N⊆U,给出以下结论:
①若M⊆N,则对于任意x∈U,都有fM(x)≤fN(x);
②对于任意x∈U都有fCUM(x)=1-fM(x)
③对于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④对于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
则结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)在等差数列{an}中,a15=33,a25=66,则a35=
99
99

查看答案和解析>>

同步练习册答案