精英家教网 > 高中数学 > 题目详情
12.已知三点A($\sqrt{3}+1$,1),B(1,1),C(1,2),则<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.

分析 由已知点的坐标求出向量$\overrightarrow{CA}、\overrightarrow{CB}$的坐标,然后代入数量积公式求得<$\overrightarrow{CA}$,$\overrightarrow{CB}$>.

解答 解:∵点A($\sqrt{3}+1$,1),B(1,1),C(1,2),
∴$\overrightarrow{CA}=(\sqrt{3},-1),\overrightarrow{CB}=(0,-1)$,
则cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{|\overrightarrow{CA}|•|\overrightarrow{CB}|}$=$\frac{-1×(-1)}{\sqrt{(\sqrt{3})^{2}+(-1)^{2}}×1}=\frac{1}{2}$.
∵<$\overrightarrow{CA}$,$\overrightarrow{CB}$>∈[0,π],
∴<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查平面向量的数量积运算,考查了数量积求向量的夹角,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=(x-2)lnx-ax+1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是(  )
A.(0,$\frac{1+ln3}{3}$)B.($\frac{1}{2}$,$\frac{1+ln3}{3}$]C.($\frac{1+ln3}{3}$,1)D.[$\frac{1+ln3}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一家电信公司在某大学对学生每月的手机话费进行抽样调查,随机抽取了100名学生,将他们的手机话费情况进行统计分析,绘制成频率分布直方图(如图所示).如果该校有大学生10000人,请估计该校每月手机话费在[50,70)的学生人数是3100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$=(-2,2),$\overrightarrow{b}$=(3,-4),$\overrightarrow{c}$=(1,5),求:
(1)2$\overrightarrow{a}$-$\overrightarrow{b}$+3$\overrightarrow{c}$;
(2)3($\overrightarrow{a}$-$\overrightarrow{b}$)+$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若非零向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则a1b1+a2b2=0是$\overrightarrow{a}$⊥$\overrightarrow{b}$的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别是A,B,C的对边,若a=csinB+bcosC.
(1)求B:
(2)若b=2,S△ABC=2,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)定义域为(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=lg(cos2x)的定义域为{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若不等式x2+mx+n<0的解集为(-2,3),则实数m=-1,n=-6.

查看答案和解析>>

同步练习册答案