【题目】已知函数的图像在处的切线与直线平行.
(1)求函数的极值;
(2)若,求实数m的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)求得的导数,利用导数的几何意义可得切线的斜率,由两直线平行的条件,斜率相等,可求得的值,求出的导数和单调区间,即可得到所求极值;(2)设,可得,等价于在上为增函数,求得的导数,再由参数分离和构造函数,求出最值,即可得到所求的范围.
(1)f(x)=ax+1xlnx的导数为f′(x)=a1lnx,
可得f(x)的图象在A(1,f(1))处的切线斜率为a1,
由切线与直线xy=0平行,可得a1=1,
即a=2,f(x)=2x+1xlnx,
f′(x)=1lnx,
由f′(x)>0,可得0<x<e,由f′(x)<0,可得x>e,
则f(x)在(0,e)递增,在(e,+∞)递减,
可得f(x)在x=e处取得极大值,且为e+1,无极小值;
(2)可设,若∈(0,+∞),
由,可得,
即有恒成立,设在(0,+∞)为增函数,
即有g′(x)=1lnx2mx0对x>0恒成立,
可得在x>0恒成立,
由的导数为得:
当h′(x)=0,可得,
h(x)在(0, )递减,在(,+∞)递增,
即有h(x)在x=处取得极小值,且为最小值
可得,
解得
则实数m的取值范围是
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x),满足 ,且f(3)=f(1)﹣1.
(1)求实数k的值;
(2)若函数g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,离心率为.
(1)求椭圆的方程;
(2), 是过点且互相垂直的两条直线,其中交圆于, 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】怀化某中学对高三学生进行体质测试,已知高三某个班有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm)
男生成绩在195cm以上(包含195cm)定义为“合格”,成绩在195cm以下(不包含195cm)定义为“不合格”,女生成绩在185cm以上(包含185cm)定义为“合格”,成绩在185cm以下(不包含185cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中按成绩合格与否进行分层抽样,抽取6人,求抽取成绩为“合格”的学生人数;
(3)若从(2)中抽取的6名学生中任意选取4个人参加复试,求这4人中至少3人合格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{}的前n项和为,且满足2=+m(m∈R).
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若数列{}满足,求数列{}的前n项和.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)法一:由前n项和与数列通项公式的关系可得数列的通项公式为;
法二:由题意可得,则,据此可得数列的通项公式为.
(Ⅱ)由(Ⅰ)可得,裂项求和可得.
(Ⅰ)法一:
由得,
当时,,即,
又,当时符合上式,所以通项公式为.
法二:
由得
从而有,
所以等比数列公比,首项,因此通项公式为.
(Ⅱ)由(Ⅰ)可得,
,
.
【点睛】
本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
18
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com