精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
中,角所对的边分别为,已知=3,=,,
(1)求得值;
(2)求△的面积.

(1).(2)的面积.

解析试题分析:(1)应用三角函数同角公式得,
再据,求得,进一步应用正弦定理可得解.
(2)由已知,只需进一步确定,结合.
可得.
应用的面积公式即得解.
试题解析:(1)在中,
由题意知
又因为
所有
由正弦定理可得
.
(2)由

,得.
所以


.
因此,的面积.
考点:正弦定理,三角函数诱导公式、同角公式,两角和差的三角函数,三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角所对的边为,且满足
(1)求角的值;(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,解三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角所对的边
(1)若面积的值;
(2)若,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角所对的边分别为,已知
(1)求角的大小;
(2)已知的面积为6,求边长的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图4,在平面四边形中,
,
(1)求的值;
(2)求的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角中,分别为角所对的边,且.
(1)求角的大小;
(2)若,且的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2
(1)当p=,b=1时,求a,c的值;
(2)若角B为锐角,求p的取值范围.

查看答案和解析>>

同步练习册答案