精英家教网 > 高中数学 > 题目详情
6.下列各点中,与点(1,2)位于直线x+y-1=0的同一侧的是(  )
A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)

分析 根据二元一次不等式与平面区域的关系进行判断即可.

解答 解:当x=1,y=2时,x+y-1=1+2-1=2>0,
即点(1,2)位于不等式x+y-1>0对应的平面区域,
则当x=-1,y=3时,x+y-1=-1+3-1=1>0,满足条件.
故选:C

点评 本题主要考查二元一次不等式表示平面区域的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.我国2010年底的人口总数为M,人口的年平均自然增长率p,到2020年底我国人口总数是(  )
A.M(1+P)3B.M(1+P)9C.M(1+P)10D.M(1+P)11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系中,已知M(2,1)和直线L:x-y=0,试在直线L上找一点P,在X轴上找一点Q,使三角形MPQ的周长最小,最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,则g(g($\frac{1}{3}$))=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2b•4x-2x-1
(Ⅰ)当b=$\frac{1}{2}$时,利用定义证明函数g(x)=$\frac{f(x)}{{2}^{x}}$在(-∞,+∞)上是增函数;
(Ⅱ)当b=$\frac{1}{2}$时,若f(x)-m≥0对于任意x∈R恒成立,求m的取值范围;
(Ⅲ)若f(x)有零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$
(1)求△ABC的周长;
(2)求sin(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{3-x}{2x-4}$<1的解集为{x|x<2或x>$\frac{7}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若n∈N+,且n≥2,求证:$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是(  )
①长方体 ②圆锥 ③三棱锥 ④圆柱.
A.②①③B.①②③C.③②④D.④③②

查看答案和解析>>

同步练习册答案