【题目】已知椭圆: 上顶点为,右焦点为,过右顶点作直线,且与轴交于点,又在直线和椭圆上分别取点和点,满足(为坐标原点),连接.
(1)求的值,并证明直线与圆相切;
(2)判断直线与圆是否相切?若相切,请证明;若不相切,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示,是临江公园内一个等腰三角形形状的小湖(假设湖岸是笔直的),其中两腰米,.为了给市民营造良好的休闲环境,公园管理处决定在湖岸,上分别取点,(异于线段端点),在湖上修建一条笔直的水上观光通道(宽度不计),使得三角形和四边形的周长相等.
(1)若水上观光通道的端点为线段的三等分点(靠近点),求此时水上观光通道的长度;
(2)当为多长时,观光通道的长度最短?并求出其最短长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过P(4,-2),Q(-1,3)两点,且圆心在x轴上。
(1)求直线PQ的方程;
(2)圆C的方程;
(3)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中, 为正三角形,平面平面, , , .
(Ⅰ)求证:平面平面;
(Ⅱ)求三棱锥的体积;
(Ⅲ)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间满足关系式为大于的常数),现随机抽取6件合格产品,测得数据如下:
对数据作了处理,相关统计量的值如下表:
(1)根据所给数据,求关于的回归方程(提示:由已知, 是的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为 )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com