精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右顶点分别为,且以线段为直径的圆与直线相切,椭圆截直线所得线段的长度为1.

1)求椭圆的方程;

2)设过点的动直线与椭圆相交于两点,若为坐标原点),求直线的斜率的取值范围.

【答案】(1)(2).

【解析】

1)根据直线与圆相切,以及椭圆中截得的弦长即可列方程求得,则问题得解;

2)设出直线方程,联立椭圆方程,根据韦达定理,结合向量的模长关系,即可容易求得.

1)以线段为直径的圆方程为

因为其与直线相切,

故可得

满足椭圆方程,故可得

故可得

故可得椭圆方程为.

2)因为,故可得

坐标分别为,即

设直线方程为

联立椭圆方程可得

若要使得直线与椭圆交于两点,

解得,即.

故可得

.

要满足题意,只需

,则.

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

1)分别估计该市的市民对甲,乙两部门评分的中位数;

2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;

3)根据茎叶图分析该市的市民对甲,乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为落实国家精准扶贫政策,让市民吃上放心蔬菜,某企业于2018年在其扶贫基地投入万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长10%.

1)写出第(2019年为第一年)该企业投入的资金数(万元)的函数关系式,并指出函数的定义域;

2)该企业从第几年开始(2019年为第一年),每年投入的资金数将超过万元?

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查。现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时)。调查结果如下表:

A类

B类

C类

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计

(III)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的数学期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,设图象的交点坐标为,若,则的最小值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】折纸是一项艺术,可以折出很多数学图形.将一张圆形纸片放在平面直角坐标系中,圆心B(-1,0),半径为4,圆内一点A为抛物线的焦点.若每次将纸片折起一角,使折起部分的圆弧的一点始终与点A重合,将纸展平,得到一条折痕,设折痕与线段B的交点为P

Ⅰ)将纸片展平后,求点P的轨迹C的方程;

Ⅱ)已知过点A的直线l与轨迹C交于RS两点,当l无论如何变动,在AB所在直线上存在一点T,使得所在直线一定经过原点,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如下表:

(1)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(2)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求函数的定义域;

(2)求证:为偶函数;

(3)指出方程的实数根个数,并说明理由.

查看答案和解析>>

同步练习册答案