精英家教网 > 高中数学 > 题目详情
设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

试题分析:(1)椭圆的方程是标准方程,已知椭圆过点,这必定是椭圆的顶点,从而易知(当然也可直接把代入椭圆方程解出),再由离心率为,可求出.得椭圆的方程.(2)这是直线与椭圆相交求相交弦长的问题,我们可以用相交弦长公式求解,这里是直线的斜率,是交点的横坐标.
试题解析:(Ⅰ)将(0,4)代入C的方程得 ∴,又 得, 
 ∴C的方程为
( Ⅱ)过点且斜率为的直线方程为
设直线与C的交点为A,B,将直线方程代入C的方程,得,即 
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是常数),且动点轴的距离比到点的距离小.
(1)求动点的轨迹的方程;
(2)(i)已知点,若曲线上存在不同两点满足,求实数的取值范围;
(ii)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.

(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线在矩阵的变换作用下得到曲线
(Ⅰ)求矩阵
(Ⅱ)求矩阵的特征值及对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴直线与椭圆相交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点到点的距离等于它到直线的距离,则点的轨迹方程是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则(       )
A.1B.C.D.2

查看答案和解析>>

同步练习册答案