精英家教网 > 高中数学 > 题目详情
知二次函数f(x)=ax2-(a+2)x+1(a∈z),在区间(-2,-1)上恰有一个零点,解不等式f(x)>1.
考点:函数零点的判定定理
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由题意,f(-2)•f(-1)<0,从而求出a=-1,从而化简不等式求解即可.
解答: 解:由题设易知:
f(-2)•f(-1)<0⇒-
3
2
<a<-
5
6

又∵a∈z,
∴a=-1,
∴f(x)=-x2-x+1⇒-x2-x+1>1,
∴不等式解集为(-1,0).
点评:本题考查了函数的零点的判断应用及一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|≠0,且关于x的函数f(x)=
1
6
x3+
1
2
|
a
|x2+
a
b
x+2014在R上有极值,则
a
b
的夹角θ的取值范围为(  )
A、(0,
π
3
]
B、(
π
2
,π]
C、(
π
3
,π]
D、(
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(Ⅰ)在给定的坐标系中,直接作出函数f(x)的图象;
(Ⅱ)根据图象指出f(x)的单调递减区间;
(Ⅲ)根据图象写出不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图中的正(主)视图、侧(左)视图、俯视图均是大小形状完全相同的图形,那么这个几何体可能是(  )
A、球B、圆柱C、三棱柱D、圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
2
n(n+1)
},则其前n项和等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4+x2
4-x2

(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)求证:f(
2
x
)=-f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:4x+2x-1=11.

查看答案和解析>>

科目:高中数学 来源: 题型:

值域是(0,+∞)的函数是(  )
A、y=x2-x+1
B、y=
1
x
C、y=|x+1|
D、y=
1
x
(x>0)

查看答案和解析>>

同步练习册答案