精英家教网 > 高中数学 > 题目详情

【题目】已知 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为

【答案】
【解析】解:由 = + ,可得A,B,C共线,

= ,可得| |cos∠AKC=| |cos∠BKC,即有∠AKC=∠BKC,则KC为∠AKB的平分线,

由角平分线的性质定理可得 = =r,即有K的轨迹为圆心在AB上的圆,由|K1A|=r|K1B|,可得|K1B|=

由|K2A|=r|K2B|,可得= ,可得|K1K2|= + = |AB|= |AB|,

由r﹣ 在r≥2递增,可得r﹣ ≥2﹣ = ,即有|K1K2|≤ |AB|,即 ,由题意可得c≥ ,故c的最小值为

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

(I)已知该校有 名学生,试估计全校学生中,每天学习不足 小时的人数.
(II)若从学习时间不少于 小时的学生中选取 人,设选到的男生人数为 ,求随机变量 的分布列.
(III)试比较男生学习时间的方差 与女生学习时间方差 的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数λ>0,设函数f(x)=eλx
(Ⅰ)当λ=1时,求函数g(x)=f(x)+lnx﹣x的极值;
(Ⅱ)若对任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是(  )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的最小正周期和单调递增区间;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对角为x,试求x的范围及此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的右焦点为F2(1,0),点H(2, )在椭圆上.
(1)求椭圆的方程;
(2)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,求证:△PF2Q的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =(
A.3
B.
C.6
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,焦点在x轴的椭圆,离心率e= ,且过点A(﹣2,1),由椭圆上异于点A的P点发出的光线射到A点处被直线y=1反射后交椭圆于Q点(Q点与P点不重合).

(1)求椭圆标准方程;
(2)求证:直线PQ的斜率为定值;
(3)求△OPQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.

查看答案和解析>>

同步练习册答案