精英家教网 > 高中数学 > 题目详情

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.

(1)若选取的是后面4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”;

(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据(x1,y1),(x2,y2),……,(xn,yn),其回归直线的斜率和截距的最小二乘估计分别为:

【答案】(1)求出的回归方程是“恰当的回归方程”; (2)间隔时间最多设置18分钟.

【解析】

1)由后四组数据求得的值,可得线性回归方程,分别取x1011求得y值,与原表格中对应的y值作差判断;(2)直接由1.4x+9.635,求得x值得答案.

1)由后面四组数据求得

x10时,,而23.6230.61

x11时,,而252501

∴求出的线性回归方程是“恰当回归方程”;

2)由1.4x+9.635,得x

故间隔时间最多可设置为18分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义首项为1且公比为正数的等比数列为“M-数列”.

1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;

2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.

①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当km时,都有成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程

年份序号x

1

2

3

4

5

6

7

8

9

年养殖山羊万只

根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:

试估计:该县第一年养殖山羊多少万只

到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,,求实数a的取值范围;

时,曲线和曲线是否存在公共切线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,,四边形是直角梯形,.

)证明:平面.

)若平面平面的中点,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如图所示,已知椭圆的左、右顶点分别为,右焦点为.设过点的直线与此椭圆分别交于点,其中.

(1)设动点满足:,求点的轨迹;

(2)设,求点的坐标;

(3)设,求证:直线必过轴上的一定点(其坐标与无关),并求出该定点的坐标.

查看答案和解析>>

同步练习册答案