精英家教网 > 高中数学 > 题目详情

【题目】设集合A=[0, ),B=[ ,1],函数f (x)= ,若x0∈A,且f[f (x0)]∈A,则x0的取值范围是(
A.(0, ]
B.[ ]
C.(
D.[0, ]

【答案】C
【解析】解:∵0≤x0 ,∴f(x0)=x0 + ∈[ ,1]B,
∴f[f(x0)]=2(1﹣f(x0))=2[1﹣(x0+ )]=2( ﹣x0).
∵f[f(x0)]∈A,∴0≤2( ﹣x0)< ,∴ <x0
又∵0≤x0 ,∴ <x0
故选C.
【考点精析】根据题目的已知条件,利用元素与集合关系的判断和函数的值的相关知识可以得到问题的答案,需要掌握对象与集合的关系是,或者,两者必居其一;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式。对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(1)根据所给数据,求关于的回归方程;

(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足 =0, =2
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为k的直线 l与圆x2+y2=1相切,直线 l与(1)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且 时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为{x|xR,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.

(1)求证:f(x)是偶函数;

(2)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+ 在区间[1,4]上存在次不动点,则实数a的取值范围是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在区间[﹣m,m]上的函数f(x)=log2 是奇函数,且f(﹣ )≠f( ),则nm的范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示

年份2010+x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

(1)请根据上表提供的数据,求出y关于x的线性回归方程;

(2) 据此估计2015年该城市人口总数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an= ,若从{an}中提取一个公比为q的等比数列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 则满足条件的最小q的值为

查看答案和解析>>

同步练习册答案