精英家教网 > 高中数学 > 题目详情

数列{an} 的各项均为正数,a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)当k=1,f(p,k)=p+k,p=5时,求a2,a3
(2)若数列{an}成等比数列,请写出f(p,k)满足的一个条件,并写出相应的通项公式(不必证明);
(3)当k=1,f(p,k)=p+k时,设Tn=a1+2a2+3a3+…+2an+an+1,求Tn

解:(1)由题意,an+an+1=6•5n
∵a1=p=5,
∴a2=25,a3=125
(2)数列{an}成等比数列,设公比为q,则an=p×qn-1
∴an+k=p×qn+k-1
∴an+an+k=p×qn-1+p×qn+k-1=(1+qk)×p×qn-1
∵an+an+k=f(p,k)•pn
∴q=p时,f(p,k)=1+pk时,an+an+k=(1+pk)•pn且an=pn
(3)当k=1,f(p,k)=p+k时,an+an+1=(1+p)pn
由(2)知,∴Tn=a1+2a2+3a3+…+2an+an+1=(a1+a2)+(a2+a3)+…+(an+an+1)=(1+p)(p+p2+…+pn
p=1时,Tn=2n;当p≠1且p>0时,Tn=
分析:(1)由题意,an+an+1=6•5n,利用a1=p=5,代入计算,即可求得a2,a3
(2)设出公比,利用an+an+k=f(p,k)•pn,即可得到当f(p,k)=1+pk时,an=pn
(3)当k=1,f(p,k)=p+k时,an+an+1=(1+p)pn,再利用分组求和,即可得到结论.
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列,则a2009=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
a
2
n
+2an+1(n∈N*)

(1)证明数列{an}是等差数列,并求其通项公式;
(2)证明:对任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差d大于零的等差数列,对某个确定的正整数k,有a12+ak+12≤M(M是常数).
(1)若数列{an}的各项均为正整数,a1=2,当k=3时,M=100,写出所有这样数列的前4项;
(2)当k=5,M=100时,对给定的首项,若由已知条件该数列被唯一确定,求数列{an}的通项公式;
(3)记Sk=a1+a2+…+ak,对于确定的常数d,当Sk取到最大值时,求数列{an}的首项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区二模)已知{an}是公差d大于零的等差数列,对某个确定的正整数k,有a12+ak+12≤M(M是常数).
(1)若数列{an}的各项均为正整数,a1=2,当k=3时,M=100,写出所有这样数列的前4项;
(2)若数列{an}的各项均为整数,对给定的常数d,当数列由已知条件被唯一确定时,证明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此时数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知数列{an}的通项公式为an=2n(n∈N*),把数列{an}的各项排列成如图所示的三角形数阵:记M(s,t)表示该数阵中第s行的第t个数,则数阵中的偶数2010对应于(  )

查看答案和解析>>

同步练习册答案