精英家教网 > 高中数学 > 题目详情
8.已知△ABC的三边分别为a,b,c,且其中任意两边长均不相等,若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列.
(1)比较$\sqrt{\frac{b}{a}}$与$\sqrt{\frac{c}{b}}$的大小,并证明你的结论;
(2)求证:角B不可能是钝角.

分析 (1)由$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列,利用等差数列的性质列出关系式,整理即可得到结果;
(2)由等差数列的性质列出关系式,表示出b,再利用余弦定理表示出cosB,把表示出的b代入并利用基本不等式判断cosB的正负,即可做出判断.

解答 解:(1)∵a,b,c任意两边长均不相等,若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列,
∴$\frac{2}{b}$=$\frac{1}{a}$+$\frac{1}{c}$>$\frac{2}{\sqrt{ac}}$,即$\frac{1}{b}$>$\frac{1}{\sqrt{ac}}$,
则$\sqrt{\frac{c}{b}}$>$\sqrt{\frac{b}{a}}$;
(2)∵$\frac{2}{b}$=$\frac{1}{a}$+$\frac{1}{c}$,
∴b=$\frac{2ac}{a+c}$,
由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{2ac}{a+c})^{2}}{2ac}$=$\frac{({a}^{2}+{c}^{2})(a+c)^{2}-4{a}^{2}{c}^{2}}{2ac(a+c)^{2}}$≥$\frac{2ac•4ac-4{a}^{2}{c}^{2}}{2ac(a+c)^{2}}$=$\frac{4ac-2ac}{(a+c)^{2}}$=$\frac{2ac}{(a+c)^{2}}$>0,
则B不可能为钝角.

点评 此题考查了余弦定理,以及数列的应用,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设点O是△ABC所在平面上一点,若|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则点O是△ABC的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=ax3-3x2+1存在唯一的零点x0,且x0<0,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠ABC=∠BCD=90°,面PAD⊥面ABCD,PA=PD=CD=BC=1,AB=2,AD=$\sqrt{2}$.
(1)证明:AP⊥面PBD.
(2)若点E是线段PB上一点,且$\overrightarrow{PE}$=2$\overrightarrow{EB}$,求三棱锥P-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(1-3x)的定义域是(  )
A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一个直三棱柱的底面三边长之比为3:4:5,侧棱长为12cm,侧面积为288cm2,求该棱柱底面各边长及其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有5位同学相约参加某一电视娱乐节目,其中有2人已经参加过,另外3人没有参加过.
(1)从这些同学中随机选出2人,求这两位同学中至少有一位参加过此节目的概率.
(2)若参加此节目需要预选,参加过此节目的同学通过的概率为$\frac{1}{2}$,没有参加过的同学通过预选的概率是$\frac{1}{3}$,记通过预选的人数为X.求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从1,3,5,7中任取3个数字,从0,2,4中任取2个数字,一共可以组成没有重复数字的五位数的个数是1248.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥ABCD-A1B1C1D中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0),现将与四棱锥ABCD-A1B1C1D形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱锥形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新的四棱柱中,记其中最小的表面积为f(k),写出f(k)的表达式.

查看答案和解析>>

同步练习册答案