精英家教网 > 高中数学 > 题目详情
如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是(  )
分析:由二次函数图象的对称轴确定a的范围,据g(x)的表达式计算g(
1
2
)和g(1)的值的符号,从而确定零点所在的区间.
解答:解:由函数f(x)=x2+ax+b的部分图象得0<b<1,f(1)=0,从而-2<a<-1,
而g(x)=lnx+2x+a在定义域内单调递增,
g(
1
2
)=ln
1
2
+1+a<0,
g(1)=ln1+2+a=2+a>0,
∴函数g(x)=lnx+f′(x)的零点所在的区间是(
1
2
,1);
故选C.
点评:本题主要考查了导数的运算,以及函数零点的判断,同时考查了运算求解能力和识图能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R的部分图象,则下列命题中,正确命题的序号为
 

①函数f(x)的最小正周期为
π
2

②函数f(x)的振幅为2
3

③函数f(x)的一条对称轴方程为x=
12

④函数f(x)的单调递增区间为[
π
12
12
];
⑤函数的解析式为f(x)=
3
sin(2x-
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象
(1)求函数解析式,写出f(x)的单调减区间
(2)当x∈[
π
12
π
2
],求f(x)的值域.
(3)当x∈R时,求使f(x)≥1 成立的x 的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=x3+bx2+cx+d图象,则函数y=x2+2bx+c的单调递增区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的图象的一部分,则其解析式f(x)=
3sin(3x-
π
2
3sin(3x-
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)若如图是函数f(x)=sin2x和函数g(x)的部分图象,则函数g(x)的解析式可能是(  )

查看答案和解析>>

同步练习册答案