精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求实数a的取值范围.

【答案】解:(Ⅰ)a=3时,f(x)=|x﹣3|﹣ x<0, 即|x﹣3|< x,
两边平方得:(x﹣3)2 x2
解得:2<x<6,
故不等式的解集是{x|2<x<6};
(Ⅱ)f(x)﹣f(x+a)
=|x﹣a|﹣ x﹣|x|+ (x+a)
=|x﹣a|﹣|x|+
若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,
即|x﹣a|﹣|x|+ <a2+ 对x∈R恒成立,
即a2>|x﹣a|﹣|x|,而|x﹣a|﹣|x|≤|(x﹣a)﹣x|=|a|,
原问题等价于|a|<a2 , 又a>0,
∴a<a2 , 解得a>1
【解析】(Ⅰ)将a的值带入f(x),两边平方求出不等式的解集即可;(Ⅱ)求出f(x)=|x﹣a|﹣|x|+ ,原问题等价于|a|<a2 , 求出a的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若集合A={x|log4x≤ },B={x|(x+3)( x﹣1)≥0},则A∩(RB)=(
A.(0,1]
B.(0,1)
C.[1,2]
D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )

A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病

C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:

)依茎叶图判断哪个班的平均分高?

)现班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;

)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?

甲班

乙班

合计

优秀

不优秀

合计

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下结论,其中正确结论的个数为( )

①函数的零点为,则函数的图象经过点时,函数值一定变号.

②相邻两个零点之间的所有函数值保持同号.

③函数在区间上连续,若满足,则方程在区间上一定有实根.

④“二分法”对连续不断的函数的所有零点都有效.

A. 0个B. 1个C. 2个D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=ax2+bx,(ab为常数,且a≠0)满足条件f(2-x)=fx-1),且方程fx)=x有两个相等的实根.

(1)求fx)的解析式;

(2)设gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

(3)是否存在实数mnmn),使fx)的定义域和值域分别为[mn][2m,2n],若存在,求出mn的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若对任意x≥1,不等式f(x)≤g(x)恒成立,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

同步练习册答案