精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线和圆,抛物线的焦点为.

1)求的圆心到的准线的距离;

2)若点在抛物线上,且满足 过点作圆的两条切线,记切点为,求四边形的面积的取值范围;

3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是直线的方程为

【答案】14;(2;(3)见解析

【解析】

1)分别求出圆心和准线方程即可得解;

2)根据条件可表示出四边形的面积,利用函数的单调性即可得解;

3)充分性:令直线的方程为,分别求出四点坐标后即可证明;必要性:设的方程为,由可得,即可得出的关系,进而可得出直线的方程为.

1)由可得:的圆心与的焦点重合,

的圆心的准线的距离为.

2)四边形的面积为:

时,四边形的面积的取值范围为.

2)证明(充分性) :若直线的方程为,将分别代入

.

.

(必要性) :,则线段与线段的中点重合,

的方程为

,将代入

同理可得,

而当时,将其代入不可能成立; .

时,由得:

代入

(舍去)

直线的方程为.

的充要条件是“直线的方程为”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC45°ADAP2ABDPECD的中点,点F在线段PB.试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司生产新能源汽车,20193-9月份销售量(单位:万辆)数据如下表所示:

月份

3

4

5

6

7

8

9

销售量

(万辆)

3.008

2.401

2.189

2.656

1.665

1.672

1.368

1)某企业响应国家号召,购买了6辆该公司生产的新能源汽车,其中四月份生产的4辆,五月份生产的2辆,6辆汽车随机地分配给AB两个部门使用,其中A部门用车4辆,B部门用车2.现了解该汽车公司今年四月份生产的所有新能源汽车均存在安全隐患,需要召回.求该企业B部门2辆车中至多有1辆车被召回的概率;

2)经分析可知,上述数据近似分布在一条直线附近.关于的线性回归方程为,根据表中数据可计算出,试求出的值,并估计该厂10月份的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1底面四边形ABCD为菱形A1AAB2,∠ABCEF分别是BCA1C的中点

(1)求异面直线EFAD所成角的余弦值;

(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,APABAD两两垂直,BCAD,且APABAD4BC2.

1)求二面角P-CD-A的余弦值;

2)已知H为线段PC上异于C的点,且DCDH,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足是数列的前项和().

(1)设数列是首项和公比都为的等比数列,且数列也是等比数列,求的值;

(2)设,若恒成立,求的取值范围;

(3)设),若存在整数,且,使得成立,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蔬菜批发市场销售某种蔬菜,在一个销售周期内,每售出1吨该蔬菜获利500元,未售出的蔬菜低价处理,每吨亏损100元.统计该蔬菜以往100个销售周期的市场需求量,绘制下图所示频率分布直方图.

(Ⅰ)求的值,并求100个销售周期的平均市场需求量(以各组的区间中点值代表该组的数值);

(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设为该销售周期的利润(单位:元),为该销售周期的市场需求量(单位:吨).求的函数解析式,并估计销售的利润不少于86000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的右焦点为F,左顶点为A,离心率,且经过圆O:的圆心.过点F作不与坐标轴重合的直线和该椭圆交于MN两点,且直线分别与直线交于PQ两点.

1)求椭圆的方程;

2)证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)在曲线上任取一点,连接,在射线上取,使,点轨迹的极坐标方程;

2)在曲线上任取一点,在曲线上任取一点,的最小值.

查看答案和解析>>

同步练习册答案
关 闭