精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3-3x2-9x+11
(Ⅰ)求函数f(x)的递减区间.
(Ⅱ)讨论函数f(x)的极值情况,如有,求出极值.

分析 求出函数的导数,解关于导函数的不等式,列出表格;(Ⅰ)根据表格求出函数的递减区间即可;(Ⅱ)根据表格求出函数的极值即可.

解答 解:f′(x)=3x2-6x-9=3(x+1)(x-3),…(3分)
令f′(x)=0,得x1=-1,x2=3.…(5分)
x变化时,f′(x)的符号变化情况及f(x)的增减性如下表所示:

x(-∞,-1)-1(-1,3)3(3,+∞)
f′(x)+0-0+
f(x)极大值
f(-1)
极小值
f(3)
(Ⅰ)由表可得函数的递减区间为(-1,3); …(10分) 
(Ⅱ)由表可得,当x=-1时,函数有极大值为f(-1)=16;
当x=3时,函数有极小值为f(3)=-16.…(13分)

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若P(2,1)为圆x2+(y+1)2=25的弦AB的中点,则直线AB的方程是x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2$\sqrt{3}$,且AC,BD交于点O,E是PB上任意一点.
(1)求证:AC⊥DE
(2)已知二面角A-PB-D的余弦值为$\frac{\sqrt{15}}{5}$,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点M(0,4)的直线l交抛物线x2=4y于AA,B两点,若△AOM与△BOM的面积比为2:1(O为坐标原点),则直线l的斜率为±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB=2
(I)证明:BC1∥平面A1CD
(II)求直线EC1与面A1DC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2x+x-4的零点个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,函数y=log24x图象上的两点A,B和y=log2x上的点C,线段AC平行于y轴,三角形ABC为正三角形时,点B的坐标为(p,q),则p2×2q=(  )
A.12B.$12\sqrt{3}$C.6D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(12,5)=2,下面是一个算法的程序框图,当输入的n为77时,则输出的结果为(  )
A.9B.5C.11D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P在圆x2+y2-2x+4y+1=0上,点Q在不等式$\left\{\begin{array}{l}{x+y≥2}\\{0≤y≤1}\end{array}\right.$,表示的平面区域内,则线段PQ长的最小值是$\sqrt{5}-2$.

查看答案和解析>>

同步练习册答案