精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow{b}$=(2cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求y=f(x)的单调递增区间;
(Ⅱ)在给定直角坐标系中,画出函数f(x)在区间[0,π]上的图象.

分析 (I)根据向量的数量积公式得到f(x)并化简得f(x)=sin(2x-$\frac{π}{4}$),令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ即可求出f(x)的增区间;
(II)根据函数图象平移规律得到g(x)=2sin(2x+$\frac{π}{4}$),然后使用描点法作出函数图象.

解答 解:(I)f(x)=a•b=$\sqrt{2}$sinxcosx-$\frac{\sqrt{2}}{2}$(cosx+sinx)•(cosx-sinx)
=$\frac{\sqrt{2}}{2}$sin2x-$\frac{\sqrt{2}}{2}$(cos2x-sin2x)=$\frac{\sqrt{2}}{2}$(sin2x-cos2x)
=$\frac{{\sqrt{2}}}{2}$(sin2x-cos2x)
=sin(2x-$\frac{π}{4}$).
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{8}$+kπ≤x≤$\frac{3π}{8}$+kπ,k∈Z.
∴y=f(x)的单调递增区间是[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ],k∈Z.
(Ⅱ) f(x)=sin(2x-$\frac{π}{4}$),∴g(x)=2sin(2(x+$\frac{π}{4}$)-$\frac{π}{4}$)=2sin(2x+$\frac{π}{4}$).
列表得

x0$\frac{π}{8}$$\frac{3π}{8}$$\frac{5π}{8}$$\frac{7π}{8}$π
2x$+\frac{π}{4}$$\frac{π}{4}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{9π}{4}$
g(x)$\sqrt{2}$20-20$\sqrt{2}$
经过描点、连线得

点评 本题考查了三角函数的恒等变换,图象变换和性质,以及描点作图,将f(x)进行恒等变换化成复合三角函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在△ABC中,D是AB边的中点,试用$\overrightarrow{AC}$、$\overrightarrow{BC}$表示向量$\overrightarrow{CD}$,则$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.三棱锥P-ABC中,PA=PB=PC,PO⊥平面ABC于O.则O为△ABC的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x+sin({2x-\frac{π}{6}})$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若$x∈({0,\frac{π}{2}})$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个四棱锥的底面是边长为4的正方形,各侧棱都等于3,那么这个四棱锥的高等于(  )
A.1B.$\sqrt{2}$C.5D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=$\frac{{\sqrt{2}}}{2}$(cosx-sinx)•sin($x+\frac{π}{4}$)-2asinx+b(a>0).
(1)若b=1,且对任意$x∈(0,\frac{π}{6})$,恒有f(x)>0,求a的取值范围;
(2)若f(x)的最大值为1,最小值为-4,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:若2-x-2y>lnx-1n(-y)(x>0,y<0),则x+y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U=R,集合A={x|0<log2x<2},B={y|y=x2+2},则(CUB)∩A=(  )
A.(1,2)B.(1,4)C.[2,4)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

同步练习册答案