精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

【答案】
(1)证明:∵O,M分别为AB,VA的中点,

∴OM∥VB,

∵VB平面MOC,OM平面MOC,

∴VB∥平面MOC


(2)证明:∵AC=BC,O为AB的中点,

∴OC⊥AB,

∵平面VAB⊥平面ABC,OC平面ABC,

∴OC⊥平面VAB,

∵OC平面MOC,

∴平面MOC⊥平面VAB


(3)解:在等腰直角三角形ACB中,AC=BC= ,∴AB=2,OC=1,

∴SVAB=

∵OC⊥平面VAB,

∴VCVAB= SVAB=

∴VVABC=VCVAB=


【解析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为.

(I)求曲线的方程;

(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用网络外卖

偶尔或不用网络外卖

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

(1)根据表中数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn=an﹣1,则关于数列{an}的下列说法中,正确的个数有(
①一定是等比数列,但不可能是等差数列
②一定是等差数列,但不可能是等比数列
③可能是等比数列,也可能是等差数列
④可能既不是等差数列,又不是等比数列
⑤可能既是等差数列,又是等比数列.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等差数列中, 为其前项和, ,;等比数列的前项和.

(I)求数列 的通项公式;

(II)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an=an1+3(n≥2,n∈N*),数列{bn}满足bn= ,n∈N* , 则 (b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.

(1)求证:AC⊥PB;
(2)求三棱锥P﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- , )?
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |=1,| |=2.
(1)若 的夹角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求实数k的值.

查看答案和解析>>

同步练习册答案