精英家教网 > 高中数学 > 题目详情

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.

组号

分组

频数

频率

1

[160,165)

5

0.050

2

[165,170)

0.350

3

[170,175)

30

4

[175,180)

20

0.200

5

[180,185)

10

0.100

合计

100

1.00

(1)请先求出频率分布表中①②位置的相应数据,再完成频率分布直方图,并从频率分布直方图中求出中位数(中位数保留整数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.

【答案】(1)见解析,中位数172;(2).

【解析】

(1)由频率分布直方图能求出第2组的频数,第3组的频率,从而完成频率分布直方图.

(2)设第3组的3位同学为A1A2A3,第4组的2位同学为B1B2,第5组的1位同学为C1,利用列举法能出从这六位同学中抽取两位同学,第4组至少有一名学生被考官A面试的概率.

(1)①由题可知,第2组的频数为0.35×100=35人,②第3组的频率为=0.300,

频率分布直方图如图所示,

160165的频率为0.05,165170的频率为0.35,170175的频率为0.30

故知中位数在170175之间,设为x

则(x﹣170)×0.06+0.40=0.5,

解得x=172,故中位数为172.

(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,每组抽取的人数分别为:

第3组:×6=3人,

第4组:×6=2人,

第5组:×6=1人,

所以第3、4、5组分别抽取3人、2人、1人进入第二轮面试.

设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1

则从这六位同学中抽取两位同学有

(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共15种,

其中第4组的2位同学B1,B2中至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C1),(B2,C1),共有9种,所以第4组至少有一名学生被考官A面试的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1 , k2
(1)求椭圆C的方程;
(2)当r变化时,①求k1k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距两家化工厂(污染源)的污染强度分别为,它们连线上任意一点处(异于两点)的污染指数等于两化工厂对该处的污染指数之和.设

(1)试将表示为的函数;

(2)若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点A(0,3),与双曲线 =1有相同的焦点
(1)求椭圆C的方程;
(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线C经过定点P(3,),它的一个焦点为F(1,0),对应于该焦点的准线为x=-1,斜率为2的直线交圆锥曲线CA、B两点,且 AB =,求圆锥曲线C和直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为

A. 48 B. 36 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,∠BAC= ,P为∠BAC内部一点,过点P的直线与∠BAC的两边交于点B,C,且PA⊥AC,AP=
(Ⅰ)若AB=3,求PC;
(Ⅱ)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.

非一线城市

一线城市

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

算得,

参照附表,得到的正确结论是

A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”

C. 有99%以上的把握认为“生育意愿与城市级别有关”

D. 有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(Ⅰ)写出C的普通方程;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

同步练习册答案