精英家教网 > 高中数学 > 题目详情

【题目】已知点是圆上任意一点,点与点关于原点对称,线段的垂直平分线与交于.

(1)求点的轨迹的方程;

(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1) (2)轴上存在定点,使以为直径的圆恒过这个点.

【解析】试题分析:(1)由圆的方程求出F1、F2的坐标,结合题意可得点M的轨迹C为以F1,F2为焦点的椭圆,并求得a,c的值,再由隐含条件求得b,则椭圆方程可求;

(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求出A,B横坐标的和与积,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,可得.利用向量的坐标运算即可求得m值,即定点Q得坐标.

试题解析:

解:(1)由题意得

∴点的轨迹为以为焦点的椭圆

∴点的轨迹的方程为.

(2)当直线的斜率存在时,可设其方程为,设

联立可得

由求根公式可得

假设在轴上存在定点,使以为直径的圆恒过这个点,

解得

∴在轴上存在定点,使以为直径的圆恒过这个点.

当直线的斜率不存在时,经检验可知也满足以为直径的圆恒过点.

因此在轴上存在定点,使以为直径的圆恒过这个点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求椭圆的方程;

(2)设 是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于 两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 附:k2= ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879


(1)根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关

优秀

非优秀

总计

甲班

乙班

30

总计

60


(2)为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为 ,得80分以上的概率为 ,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X表示甲班通过预选的人数,求X的分布列及期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间

(Ⅱ)若恒成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年12月4日0时起郑州市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.

(1)设使用年该车的总费用(包括购车费用)为,试写出的表达式;

2问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2﹣3x+2=0}B={x|x2+2a﹣1x+a2﹣5=0}

1)若A∩B={2},求实数a的值;

2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,平行于轴的两条直线分别交两点,交的准线于两点.

(1)若在线段上, 的中点,证明:

(2)若的面积是的面积的两倍,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点P(2,3),且在两坐标轴上的截距相等的直线方程.

(2)已知直线l平行于直线4x+3y-7=0,直线l与两坐标轴围成的三角形的周长是15,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)当a=1时,求函数f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案