精英家教网 > 高中数学 > 题目详情
设f(x)为定义在R上的偶函数,当x≤-1时,f(x)=x+b,且f(x)的图象经过点(-2,0),又在y=f(x)的图象中,有一部分是顶点为(0,2),且过(-1,1)的一段抛物线.
(1)试求出f(x)的表达式;
(2)求出f(x)值域.
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:(1)由题意知,x≤-1时,用点斜式求得,x≥1时用偶函数求得,-1<x<1时,用待定系数法求得函数的解析式即可;
(2)分别求出f(x)各段的值域,最后求并集即可.
解答: 解:(1)经过点(-2,0),斜率为1的射线:y=x+2,(x≤-1)
抛物线过(-1,1)和(0,2)
由于f(x)为定义在R上的偶函数,令y=ax2+c,
则有a+c=1,c=2,
得y=-x2+2,(-1<x<1)
又函数在R上是偶函数
所以x≥1时,射线经过(2,0)且斜率为-1,
即y=-x+2,(x≥1)
所以f(x)=
x+2,x≤-1
2-x2,-1<x<1
2-x,x≥1

(2)当x≤-1时,f(x)=x+2∈(-∞,1],
当-1<x<1时,f(x)=2-x2∈(1,2],
当x≥1时,f(x)=2-x∈(-∞,1],
综上可得,f(x)∈(-∞,2]
则f(x)的值域为:(-∞,2].
点评:本题主要考查分段函数及函数的图象、函数奇偶性的应用、函数的值域,待定系数法等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,记ρ为极径,θ为极角,圆C:ρ=3cosθ的圆心C到直线l:ρcosθ=2的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在{x|x∈R,x≠1}上的函数f(x)满足f(1-x)=-f(1+x),当x>1时,f(x)=(
1
2
)x
,则函数f(x)的图象与函数g(x)=
1
2
cosπ(x+
1
2
) (-3≤x≤5)
的图象的所有交点的横坐标之和等于(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足:i•z=1+i,则z2=(  )
A、-2iB、-2C、2iD、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,且cosα=-
12
13
,则tanα=(  )
A、
5
12
B、
12
5
C、-
5
12
D、-
12
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z=x-2y,其中x,y满足不等式组
x≥0
x≤y
x+y≤2
,则z的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-sin2ωx)•tan(
π
4
+ωx),(ω>0)其图象上相邻的两个最高点之间的距离为π.
(I)求f(x+
π
12
)在区间[-
π
6
π
4
]上的最小值,并求出此时x的值;
(Ⅱ)若α∈(
12
π
2
),f(α+
π
3
)=
1
3
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=psinωx•cosωx-cos2ωx(p>0,ω>0)的最大值为
1
2
,最小正周期为
π
2

(Ⅰ)求:f(x)的解析式;
(Ⅱ)若△ABC的三条边为a,b,c,满足a2=bc,a边所对的角为A.求:角A的取值范围及函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别是a、b、c,且acosC+
3
asinC=b+c,
(1)求角A的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案