精英家教网 > 高中数学 > 题目详情
在空间直角坐标系O-xyz中,称球面S:x2+y2+z2=1上的点N(0,0,1)为球极,连接点N与A(x,y,0)的直线交球面于
A′(x′,y′,z′),那么称A′为A在球面上的球极射影,下列说法中正确的是   
(1)xOy平面上关于原点对称的两个点的球极射影关于z轴对称;
(2)在球极射影下,xOy平面上的点与球面S上的点(除球极外)是一一对应的;
(3)点(,0)的球极射影为该点本身;
(4)点(2,1,0)的球极射影为(,-).
【答案】分析:(1)xOy平面上关于原点对称的两个点的球极射影与点N构成一个等腰三角形;(2)由球极射影的概念知,在球极射影下,xOy平面上的点与球面S上的点(除球极外)是一一对应的;(3)点(,0)在球面S:x2+y2+z2=1上;(4)点(2,1,0)的球极射影为().
解答:解:(1)∵xOy平面上关于原点对称的两个点的球极射影与点N构成一个等腰三角形,
等腰三角形的顶点是N,等腰三角形的另外两个点就是xOy平面上关于原点对称的两个点的球极射影,
∴它们关于z轴对称.故(1)正确;
(2)由球极射影的概念知,在球极射影下,xOy平面上的每一个点都在球面上有一个唯一对应的点;
反之,除球极N(0,0,1)之处,球面上的每一个点在xoy平面上都有唯一对应的点.
∴在球极射影下,点xOy平面上的点与球面S上的点(除球极外)是一一对应的.
故(2)正确;
(3)∵点(,0)在球面S:x2+y2+z2=1上,
∴点(,0)的球极射影还是点(,0)
∴它的球极射影为该点本身.故(3)正确;
(4)∵点(2,1,0)的球极射影为().
而()与(,-)不重合.
∴(4)不正确.
故正确答案为:(1),(2),(3).
点评:本题考查空间中的点的坐标的应用,解题时要认真审题,正确理解球极射影这个新定义,注意转化化归思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间直角坐标系O-xyz中,点A、B、C、D的坐标分别为A(1,,0,,0)、B(0,,2,,0)、C(2,,4,,0)、D(1,,2,,2),则三棱锥A-BCD的体积是(  )
A、2B、3C、6D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系O-xyz中,已知
OA
=(1,2,3)
OB
=(2,1,2)
OP
=(1,1,2)
,点Q在直线OP上运动,则当
QA
QB
取得最小值时,点Q的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为
(-4,3,7)
(-4,3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.在空间直角坐标系O-xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.
设F1、F2为空间中的两个定点,|F1F2|=2c>0,我们将曲面Γ定义为满足|PF1|+|PF2|=2a(a>c)的动点P的轨迹.
(1)试建立一个适当的空间直角坐标系O-xyz,求曲面Γ的方程;
(2)指出和证明曲面Γ的对称性,并画出曲面Γ的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(理)在空间直角坐标系O-xyz中,满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)构成的空间区域Ω2的体积为V2([x],[y],[z]分别表示不大于x,y,z的最大整数),则V2=
7
7

查看答案和解析>>

同步练习册答案