精英家教网 > 高中数学 > 题目详情
16.对于定义域是R的任意奇函数f(x),都有(  )
A.f(x)-f(-x)>0B.f(x)-f(-x)≤0C.f(x)•f(-x)≤0D.f(x)•f(-x)>0

分析 根据函数奇偶性的性质进行判断即可.

解答 解:∵函数f(x)是奇函数,
∴f(-x)=-f(x),
则f(x)•f(-x)=-f(x)•f(x)=-f2(x)≤0,
故C正确,其他不一定正确,
故选:C

点评 本题主要考查函数奇偶性的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=ax2+bx+c,g(x)=ax+b,a>0,当-1≤x≤1时,|f(x)|≤1,且g(x)的最小值为2,则a-b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解关于x的不等式$\frac{ax-1}{x+a}$>0,(参数a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求使不等式a${\;}^{{x}^{2}-2x+1}$>a${\;}^{{x}^{2}-3x+5}$(a>0,且a≠1)成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:“双勾函数”f(x)=ax+$\frac{b}{x}$(a>0,b>0):在 (-∞,-$\sqrt{\frac{b}{a}}$],[$\sqrt{\frac{b}{a}}$,+∞)上单调递增,在[-$\sqrt{\frac{b}{a}}$,0),(0,$\sqrt{\frac{b}{a}}$]上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{{x}^{2}-(a+b)x+ab}$的定义域为M,函数g(x)=$\sqrt{x-a}$+$\sqrt{x-b}$的定义域为N(a>b>0),则下列关系式成立的是(  )
A.M?NB.M?NC.M∩N=∅D.M=N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M={x,xy,$\sqrt{x-y}$},N={0,|x|,y},若M⊆N,且N⊆M,则($\frac{1}{x}$+$\frac{1}{y}$)+($\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$)+…+($\frac{1}{{x}^{2010}}$+$\frac{1}{{y}^{2010}}$)+($\frac{1}{{x}^{2011}}$+$\frac{1}{{y}^{2011}}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示:点P在正六边形ABCDEF上按A→B→C→D→E→F→A的路径运动,其中AB=4,则$\overrightarrow{AP}$•$\overrightarrow{AB}$的取值区间[-8,24].

查看答案和解析>>

同步练习册答案