精英家教网 > 高中数学 > 题目详情
8.如图,三棱锥ABCD各棱的长均为1,E、F分别是AD、BC的中点,则EF=$\frac{\sqrt{2}}{2}$.

分析 由AB=BD=AC=CD=AD=2,F是AD中点,得BF=CF,由能能求出EF=$\frac{1}{2}$$\sqrt{3-1}$=$\frac{\sqrt{2}}{2}$.

解答 解:如图,正四面体ABCD棱长为1,F、E分别为BC、AD中点,
连结EF、BF、CE,
∵AB=BD=AC=CD=AD=1,E是AD中点,
∴BE⊥AD,CE⊥AD,
∴BE=CE=$\frac{1}{2}$22-12=$\frac{\sqrt{3}}{2}$,
∵BC=1,∴EF⊥BC,
∴EF=$\frac{1}{2}$$\sqrt{3-1}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查线段长的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.命题p:“?x∈N+,2x≥2”的否定为(  )
A.?x∈N+,2x<2B.?x∉N+,2x<2C.?x∉N+,2x<2D.?x∈N+,2x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义a*b是向量$\overrightarrow{a}$和$\overrightarrow{b}$的“向量积”,它的长度|$\overrightarrow{a}$*$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•sinθ,其中θ 为向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角.若向量$\overrightarrow{u}$=(2,0),$\overrightarrow{u}$-$\overrightarrow{v}$=(1,-$\sqrt{3}$),则|$\overrightarrow{u}$*($\overrightarrow{u}$+$\overrightarrow{v}$)|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}为等差数列,且a3+a4=3(a1+a2),a2n-1=2an
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,且Sn=m-$\frac{{{a_n}+1}}{2^n}$(m为常数).令cn=b2n (n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知直线l:x+y+m=0和圆M:x2+y2=9,若圆M上存在点P,使得P到直线l的距离为2,则实数m的取值范围是[-5$\sqrt{2}$,5$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+$\frac{1}{2y}$的最大值为$\frac{3\sqrt{2}}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2p}$x2-x+3在区间[-1,2]上的最大值为M,最小值为m,求实数p为何值时,2M+m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)的定义域为[-1,2],求函数y=f(|x|)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-$\sqrt{3}$,$\frac{5}{3}$),$\overrightarrow{b}$=($\sqrt{3}$,-$\frac{1}{3}$).
(1)求$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角是多少;
(2)求$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-λ$\overrightarrow{b}$的夹角为钝角,求λ的范围.

查看答案和解析>>

同步练习册答案