精英家教网 > 高中数学 > 题目详情

【题目】已知圆

1)若直线过定点,且与圆C相切,求的方程.

2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D的方程.

【答案】1;(2.

【解析】

1)将的斜率分成存在和不存在两种情况,结合圆心到直线的距离等于半径,求得的方程.

2)设出圆的圆心,利用两圆外切的条件列方程,由此求得圆心的坐标,进而求得圆的方程.

1)圆的圆心为,半径为.当直线斜率不存在时,即直线,此时直线与圆相切.当直线斜率存在时,设直线的方程为,即,由于与圆相切,圆心到直线的距离等于半径,即,即,解得,直线的方程为.

综上所述,直线的方程为.

2)由于圆圆心在直线上,设圆心,圆的半径,由于圆与圆外切,所以,即,即,解得.所以圆心.所以圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为

1求椭圆的方程;

2的面积为其中为坐标原点时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=logax+2),gx)=loga2x)(a0a≠1).

1)求函数fx)﹣gx)的定义域;

2)判断fx)﹣gx)的奇偶性并证明;

3)求fx)﹣gx)>0x取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 (单位:分钟)满足经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为.

⑴ 求的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;

⑵ 若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018·江西六校联考)ABC中,角A,B,C所对的边分别为a,b,c,a=4,b=4,cosA=-.

(1)求角B的大小;

(2)f(x)=cos2x+sin2(x+B),求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy满足条件,求4x-3y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴分别交于两点.

①设直线斜率分别为,证明存在常数使得,并求出的值;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线:

1)求证:直线过定点;

2)判断该定点与圆的位置关系;

3)当m为何值时,直线被圆C截得的弦最长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义一:对于一个函数,若存在两条距离为的直线,使得时,恒成立,则称函数内有一个宽度为的通道.

定义二:若一个函数对于任意给定的正数,都存在一个实数,使得函数内有一个宽度为的通道,则称在正无穷处有永恒通道.

下列函数. 其中在正无穷处有永恒通道的函数序号是 .

查看答案和解析>>

同步练习册答案