【题目】已知圆,
(1)若直线过定点,且与圆C相切,求的方程.
(2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D的方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为.
(1)求椭圆的方程;
(2)当的面积为(其中为坐标原点)且时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+2),g(x)=loga(2﹣x)(a>0,a≠1).
(1)求函数f(x)﹣g(x)的定义域;
(2)判断f(x)﹣g(x)的奇偶性并证明;
(3)求f(x)﹣g(x)>0中x取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 (单位:分钟)满足,.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为.
⑴ 求的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;
⑵ 若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·江西六校联考)在△ABC中,角A,B,C所对的边分别为a,b,c,a=4,b=4,cosA=-.
(1)求角B的大小;
(2)若f(x)=cos2x+sin2(x+B),求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线与轴轴分别交于两点.
①设直线斜率分别为,证明存在常数使得,并求出的值;
②求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义一:对于一个函数,若存在两条距离为的直线和,使得时,恒成立,则称函数在内有一个宽度为的通道.
定义二:若一个函数对于任意给定的正数,都存在一个实数,使得函数在内有一个宽度为的通道,则称在正无穷处有永恒通道.
下列函数①;②;③;④;⑤. 其中在正无穷处有永恒通道的函数序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com