精英家教网 > 高中数学 > 题目详情
(2010•宝山区模拟)设复数z是方程x2+2x+2=0的根,若复数z与复数ω在复平面对应点都在第二象限,其中复数ω=(a+
.
z
)2
,求实数a的取值范围.
分析:根据复数z是一元二次方程的解和它对应的点在第二象限,得到复数z的代数形式,根据两个复数之间的关系,表示出复数ω,根据这个复数对应的点在第二象限,得到横标和纵标与0的关系,解不等式组得到结果.
解答:解:∵复数z是方程x2+2x+2=0的根,
∴z=
-2±
4
i
2
=-1±i,
∵复数z在复平面对应点都在第二象限,
∴z=-1+i,
ω=(a+
.
z
)
2
=(a-1)2-1-2(a-1)i,
复数ω在复平面对应点都在第二象限,
∴(a-1)2-1<0  ①
-2(a-1)>0   ②
由①②可得0<a<1,
即实数a的取值范围是(0,1)
点评:本题考查一元二次方程的解与复数的几何意义,本题解题的关键是求出一元二次方程的解,根据解对应的点的位置确定符号,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宝山区模拟)函数f(x)=-x2+3x-1,x∈[3,5]的最小值为
-11
-11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设m.n∈R,给出下列命题:
(1)m<n<0⇒m2<n2(2)ma2<na2⇒m<n(3)
m
n
<a,⇒ma<na
,(4)m<n<0,⇒
n
m
<1

其中正确的命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,设椭圆C上的点A(1,
3
2
)到F1、F2两点距离之和等于4.
(1)写出椭圆C的方程;
(2)设点K是椭圆上的动点,求 线段F1K的中点的轨迹方程;
(3)求定点P(m,0)(m>0)到椭圆C上点的距离的最小值d(m),并求当最小值为1时m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)如果直线x+y+a=0与圆x2+(y+
2
)2=1
有公共点,则实数a的取值范围是
[0,2
2
]
[0,2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)已知数列{an}满足a1=1,a2=-2,an+2=-
1an
(n∈N*)
,则该数列前26项的和为
-10
-10

查看答案和解析>>

同步练习册答案